

Government of Karnataka Department of Collegiate and Technical Education

C-20 Second Year Diploma Curriculum Mechanical Engineering

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Curriculum Structure

III Semester Scheme of Studies- Diploma in Mechanical Engineering

	11			Ног	ırs per w	eek	Š		CI Mar		SE Mar			ing			
Sl. No.	# Z Course Code		Course Name	L	Т	P	Total contact hrs /week	Credits	Max	Min	Max	Min	Total Marks	Min Marks for Passing (including CIE marks)	Assigned Grade	Grade Point	SGPA and CGPA
	Integrated Courses																
1	PC/ME	20ME31P	Mechanics of Materials	3	1	4	8	6	60	24	40	16	100	40			
2	PC/ME	20ME32P	Machine Tool Technology	3	1	4	8	6	60	24	40	16	100	40			CGPA
3	PC/ME	20ME33P	Manufacturing Processes	3	1	4	8	6	60	24	40	16	100	40			8
4	PC/ME	20ME34P	Fluid Power Engineering	3	1	4	8	6	60	24	40	16	100	40			th SGPA
	Audit Course																
5	AU/KA	20KA31T	ಸಾಹಿತ್ಯ ಸಿಂಚನ-॥/ ಬಳಕೆ ಕನ್ನಡ-॥	2	0	0	2	2	50	20	-	-	50	20			
			Total	14	4	16	34	26	290	116	160	64	450	180			

^{*}PC: Programme Core:: AU-Audit Course:: KA: Kannada:: L: Lecture:: T: Tutorial:: P: Practice

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Curriculum Structure

IV Semester Scheme of Studies- Diploma in Mechanical Engineering

	/ /		Course Name	Н	ours per w	eek	ķ		CIE Marks		SEE Marks			ing			
Sl. No.	Course Category Teaching Department	Course Code		L	Т	Р	Total contact hrs /week	Credits	Max	Min	Max	Min	Total Marks	Min Marks for Passing (including CIE marks)	Assigned Grade	Grade Point	SGPA and CGPA
					Integra	ted Co	urses										
1	PC/ME	20ME41P	Operations Management	3	1	4	8	6	60	24	40	16	100	40			
2	PC/ME	20ME42P	CNC Programming and Machining	3	1	4	8	6	60	24	40	16	100	40			CGPA
3	PC/ME	20ME43P	Product Design and Development	3	1	4	8	6	60	24	40	16	100	40			8
4	PC/ME	20ME44P	Elements of Industrial Automation	3	1	4	8	6	60	24	40	16	100	40			Both SGPA
	Audit Course																
5	AU/ME	20ME45T	Indian Constitution	2	0	0	2	2	50	20	-	-	50	20			
			Total	14	4	16	34	26	290	116	160	64	450	180			

^{*}PC: Programme Core:: AU-Audit Course:: L: Lecture:: T: Tutorial:: P: Practice

3rd SEMESTER

Government of Karnataka DEPARTMENT OF TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	III	
Course Code	20ME31P	Type of Course	Programme Core	
Course Name	Mechanics of Materials	Contact Hours	8 hours/week 104 hours/semester	
Teaching Scheme	L:T:P :: 3:1:4	Credits	6	
CIE Marks	60	SEE Marks	40	

1. Rationale

In this course, Diploma engineers are required to analyse the reasons for failure of components and select the suitable materials for a given applications. For this purpose, it is essential to study the concepts, principles, applications and practices covering stress, strain, stress concentration, weak points, deformations, bending moment and shearing force. The students will also study the basic principles of Finite Elements Analysis and perform stress strain analysis using Ansys software to understand and quantify the effects of real-world conditions on a part. These simulations, will allow Diploma engineers to locate potential problems in a design, including areas of tension and weak spots. FEA becomes a tremendous productivity tool, helping engineers in reducing product development time and cost. Hence, FEA is introduced in this course. It is expected that efforts will be made to provide appropriate learning experiences in the use of basic principles to the solution of applied problems and to develop the required skill and competencies

2. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	Analyse Simple Stresses and Strains on given Structural member that is subjected to Tensile, Compressive and Shear loads by using Destructive Test.
CO-02	Draw Shear force Diagram (SFD) and Bending moment Diagram (BMD) and Also, Analyse Bending Stresses in a Beam using Finite element methods(FEM) software
CO-03	Demonstrate the application of finite element formulations to solve both One dimensional and Two dimensional Problems.
CO-04	Demonstrate the application of FEM software for Validation of both One dimensional and Two dimensional Problems

3. Course Content

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)		
Week	СО	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)		
			1. Introduction to Force- Types of Forces-Resolution of forces		Resolution of forces by Graphical Method		
1	01	01	2. Problems on Resolution of forces- Analytical Method3. Problems on Resolution of forces- Analytical Method	Refer Table 1	Verification of Forces by Lami's Theorem		
2	01	01	1. Types of Loads-Tensile, Compression, Shear, Impact, Stress- Types- Strain- Types- - Hooks Law- Young's Modulus		Conduct Tensile test for the given Specimen and Determine Stress- Strain-Young's Modulus, Yield Stress- Maximum Stress-		

			2. Stress - Strain Diagram - Elastic constants- Linear strain, Lateral Strain, Poison's Ratio, Volumetric Strain, Bulk Modulus, Rigidity Modulus , Fatigue - Endurance Limit 3. Stress concentration, Factor of Safety(FOS), Concept of Temperature stresses	Refer Table 1	Breaking Stress- % Elongation in Length and % Reduction in Area Also, Draw Stress- Strain Diagram for the above Parameters
3	01	01	Simple Problems on Stress, Strain and Elastic constants Simple Problems on Stress, Strain and Elastic constants Simple Problems on Stress, Strain and Elastic constants	Refer Table 1	Conduct Compression test for the given Specimen and Determine Stress- Strain-Young's Modulus, Yield Stress- Maximum Stress- % Reduction in Length and % Increase in Area Also, Draw Stress- Strain Diagram for the above Parameters
4	01	01	1. Problems on Members subjected to combined Stresses 2. Problems on Members subjected to combined Stresses 3. Problems on Members subjected to combined Stresses	Refer Table 1	Conduct Shear test for the given specimen
5	02	02	1. Types of Beams-Types of Loads acting on Beams-Concept of Shear force - Bending moment 2 Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for Cantilever subjected to Point Load and Uniformly Distributed loads (UDL) 3. Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for Cantilever subjected to Point Load and Uniformly Distributed loads (UDL)	Refer Table 1	Conduct Bending test for the given specimen

			1. Draw Shear force Diagram		
			(SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL)		
6	02	02	2.Draw SFD and BMD for Simply supported and Cantilever beam subjected to Point Load and UDL Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL)	Refer Table 1	Present You tube videos in Stress, Strain and Bending Stresses on Different mechanical members Prepare a report on the observations made Eg:
			3 Draw SFD and BMD for Simply supported and Cantilever beam subjected to Point Load and UDL Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL)		https://www.youtube.com/ watch?v=C-FEVzI8oe8
7	02	02	 Pure Bending-Assumptions- Neutral Axis-Bending Equation Problems on Bending Equation Problems on Bending Equation Equation 	Refer Table 1	Present You tube videos in Stress, Strain and Bending Stresses on Different mechanical members Prepare a report on the observations made
			1.Introduction to Finite Element Methods (FEM), Need-Back Ground		
8	03,04	01	 2. Methods employed in FEM- Steps in FEM 3. Advantages and Disadvantages, Limitations, Applications of FEM-Concept of Discontinuity 	Refer Table 1	Practice on FEM software (Eg: Ansys)
9	02,03,04	01,02,04	 Phases of FEA(Finite Element Analysis) Discretization Process Meshing –Element type 	Refer Table 1	Validate Bending Equation Problems solved in Week 7 using FEM software (Eg: Ansys)
10	02,03,04	01,02,04	1.Stiffness Matrix of a Bar Element 2.Global Stiffness Matrix-Properties of stiffness matrix	Refer Table 1	Validate Bending Equation Problems solved in Week 7 using FEM software (Eg: Ansys)

Total	Total in hours		39	13	52
13	03,04	02,04,07	Problems on 2-D elements	this course and present the impact of these changes on industry	Validate using FEM software (Eg: Ansys)
12	03,04	02,04,07	Problems on 1-D elements	technological changes in	Validate using FEM software (Eg: Ansys)
11	03,04	02,04,07	Problems on 1-D elements	Study the latest	Validate using FEM software (Eg: Ansys)
			3. Boundary Conditions- Methods – Types		

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Coordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

TABLE 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution).

Sl. No.	Suggestive Activities for Tutorials
01	Understand Static Equilibrium using common examples, try to apply the principles and demonstrate in class the importance of static equilibrium in daily life, at home or at work.
02	Study the behavior of Aluminum under the action of Tensile/Compression Load. Plot Stress Strain Diagram and Demonstrate in the class the behavior of Aluminum different from that of a Cast Iron.
03	A seesaw is occupied by two children of equal weight "W" N. The center of gravity of each child is x meters from the fulcrum. The length of the board is 3x meters, y mm wide and z mm thick. Determine the maximum bending stress and shear stress in the board.
04	Tapered elastic bar subjected to an applied tensile load P at one end and attached to a fixed support at the other end. The cross-sectional area varies linearly from A $_0$ at the fixed support at $x = 0$ to $A_0/2$ at $x = L$. Calculate the displacement of the end of the bar (a) by modelling the bar as a single element having cross-sectional area equal to the area of the actual bar at its midpoint along the length, (b) using two bar elements of equal length and similarly evaluating the area at the midpoint of each, and compare to the exact solution By FEM.
05	Identify the type Beam in Traffic Light Post. Determine the displacement field for this beam subjected to UDL throughout its length.
06	Discuss procedure using the commercial package available today for solving problems of FEM. Take a Structural Problem to Demonstrate the same.
07	In 1989, Jason, a research-type submersible with remote TV monitoring capabilities and weighing 35 200 N, was lowered to a depth of 646 m in an effort to send back to the attending surface vessel photographs of a sunken Roman ship offshore from Italy. The submersible was lowered at the end of a hollow steel cable having an area of 452×10 –6 m² and E = 200 GPa. Determine the extension of the steel cable. Due to the small volume of the entire system, buoyancy may be neglected.
08	Laboratory tests on human teeth indicate that the area effective during chewing is approximately 0.25 cm ² and that the tooth length is about 1.1 cm. If the applied load in the vertical direction is 880 N and the measured shortening is 0.004 cm, determine Young's modulus.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment Test Week		Duration In minutes	Max marks	Conversion	
1.	CIE-1 Written Test	5	80	30	Average of three	
2.	CIE-2 Written Test	9	80	30	tests	
3	CIE-3 Written Test	13	80	30	30	
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill	
5	CIE-5 Skill Test-Practice	12 180		100	test reduced to 20	
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10	
Total	CIE Marks			•	60	
Seme	ster End Examination (Practice)	100	40			
Total	Marks	100				

5. Format for CIE written Test

Course Name		Mechanics of Materials	Test	I/II/III	Sem	III
Course Co	ode	20ME31P	Duration	80 Min	Marks	30
Note: Ar	iswe	r any one full question from each section	. Each full q	uestion carries 10	0 marks.	
Section	Ass	essment Questions		Cognitive Levels(R/U/A)	Course Outcome	Marks
I	1					
•	2					
II	3					
	4					
III	5					
	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL.	CO	Particulars/Dimension	Marks
No.			
1	01	Verification of Forces by Lami's Theorem	30
		 Finding the resultant of forces - Analytical Method –15 Marks 	
		Verification of Forces by Lami's Theorem – Practically-15Marks	
2	02	Determine the deformation of a given specimen subjected to Tensile/Compressive/Shear loads/Bending using UTM	60
		Writing observations and Tabular column 10 Marks	
		Writing Equations required With all notations 10 Marks	
		Conduction of Experiment 20 Marks	
		Calculation and Result with Graph if any 20 Marks	
3	01,02	Portfolio evaluation based on the average of all Practice Sessions (1-6	10
		weeks)	
Tota	ıl Marks	3	100

Duration: 240Min

Duration: 240Min

5.(b)For CIE Skill Test -5

SL.	CO	Particulars/Dimension				
No.						
1	02	 Calculate and Plot SFD and BMD for the Given Data Finding Shear force and Bending Moment – (10+15)=25 Marks Plot SFD and BMD – 15 Marks 				
2	03,04	Apply finite element formulations to solve the given One dimensional cases and Validate using Ansys • Solve by FEM Method —25 Marks • Validate Using FEM software (Eg: Ansys)25 Marks	50			
3	02,03, 04	Portfolio evaluation based on the average of all Practice Sessions (7-12 weeks)	10			
Total	Marks	,	100			

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl. No.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description						
1	Schaum Outlines, "Strength of Materials", 5 Edition						
2	RAMAMURTHAM. S., "Strength of Materials", 14th Edition, Dhanpat Rai Publications, 2011						
3	KHURMI R S, "Applied Mechanics and Strength of Materials", 5 Edition, S.Chandand company						
4	NASH W.A, "Theory and problems in Strength of Materials", Schaum Outline Series, McGraw-Hill Book Co., New York, 1995.						
5	RYDER G.H, "Strength of Materials", 3rd Edition, Macmillan India Limited, 2002.						
6	BANSAL R. K, "Strength of Materials", Laxmi Publications, New Delhi, 2012.						
7	Schaum series, Strength of Materials						
8	TIMOSHENKO S.P, "Elements of Strength of Materials", Tata McGraw-Hill, Delhi,						
9	Introduction to Finite Elements in engineering by TRIRUPATHI R, CHANDRUPATLA, ASHOK D BELEGUNDA, Pearson Publications.						
10	Practical Finite Element Analysis by NITIN S GOKHALE, SANJAY S DESHPANDE, Finite to Infinite Publications						
	ANSYS free software tutorial((Student version)						
11	https://www.google.co.in/search?biw=1024&bih= 667&q=ansys+software+tutorial&sa=X&ved=0ah UKEwjm5o MndHNAh UBsI8KHbRWDhUQ1QIIXygE						

8. LIST OF SOFTWARE/LEARNING WEBSITES

- 1. www.nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024htm
- 2. www.wikipedia.org/wiki/Shear and moment diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 4. www.engineerstudent.co.uk/stress and strain.html
- 5. www.ansys.com/Student
- 6. http://www.mece.ualberta.ca/tutorials/ansys

9. SEE Scheme of Evaluation

SL.		Particulars/Dimension	Marks
No.	CO		
1	01,02	Determine the deformation of a given specimen subjected to Tensile/Compressive/Shear loads using UTM • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations 10 Marks • Conduction of Experiment 05 Marks • Calculation and Result with Graph if any 15 Marks OR Calculate and Plot SFD and BMD for the Given Data • Finding Shear force and Bending Moment - 10 Marks • Plot SFD and BMD - 15 Marks	40
		Validate Using FEM software (Eg: Ansys)15 Marks	

Duration: 180 Min

2	03,04	Apply finite element formulations to solve the given One dimensional /Two dimensional cases and Validate using Ansys • Solve by FEM Method —20Marks • Validate FEM software (Eg: Ansys)20 Marks	40
3	01,02,03	Viva voce	20
	,04		
Total Ma	arks		100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Universal testing machine	Computerized 100 Ton Capacity With all attachments to conduct shear, bending, compression and tensile test	01
02	Ansys software		20 user
03	Desktop Computer	Latest configuration	10 nos

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	III
Course Code	20ME32P	Type of Course	Programme Core
Course Name	Machine Tool Technology	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: Diploma Engineers are responsible for supervising production processes to achieve production targets and for optimal utilization of resources. For this purpose, knowledge about various machining processes is required to be imparted. The students are to be trained and equipped with adequate theoretical and practical knowledge about Metal Cutting Phenomenon and various processes like turning, drilling, milling, grinding etc. Hence, this course is introduced to provide hands on experience on various machine tools used in the manufacturing stream and to provide foundation for diploma engineers who want to further specialise in the field of precision manufacturing

2. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	List relevant work place Occupational health and safety standards and explain the importance of
CO-01	the need to comply with them.
CO-02	Explain the importance of Cutting tool Geometry, list various Cutting Parameters, the role and
CO-02	use of the right Coolants and Lubricants for the given machining processes.
CO-03	Demonstrate turning operation for a given component drawing and object, prepare a process
CO-03	chart and estimate the cost of its production as per drawing.
	Demonstrate milling and drilling operation needed as per a given component drawing, list all the
CO-04	machine tools needed for the operation, prepare a process chart and estimate the cost of its
	production as per the drawing.

3. Course Content

Week	СО	PO*	Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
			3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	05	1. Educate about Safety standards Practiced in the machine Shop - Importance of housekeeping and good Shop floor Practices(5S) 2. Understand the Principles of First Aid. Preventive measures to be taken during Fire and Electrical emergency	Refer Table 1	1.Read and interpret the safety signs displayed in the Machine shop Instructor has to show various Safety sign charts and Personnel Protective Equipment (PPE) and ask the trainees to identify and record in the dairy 2.Read and interpret the PPE

			Types of Fire extinguisher (Class A,B,C,D) 3. Knowledge about Safety and Environment Regulations		First aid and basic training Identify and Segregate waste material (cotton waste, metal chips, burrs etc.) Arrangement of waste in bins 3. Hazards identification and avoidance Preventive measure for electrica accidents Select the fire extinguisher according to type of fire 4. Operate the Fire extinguisher and extinguish the fire Preventive measure for Oil leakages and related Hazards Practice the safety norms while working on Deferent Machine Tool
2	02	01,04	1 Lubrication- Need of Lubrication- Selection of Lubricant as per ISO standard. 2.Theory of metal Removal- Traditional & Non Traditional material removal process- Chip forming & Non chip forming 3. Types of cutting tools- Single point tools-Multi point tools - Specification of Single Point Cutting Tool, Parting, Knurling Tool, V- tool	Refer Table 1	 Instructor has to display all the Lubricants used in the section and brief about its uses Select a Proper lubricant and demonstrate the lubrication of various m Ask the students to record in the Dairy Instructor has to show all the tools, machineries and measuring instruments used in the machine shop and brief about its uses. Ask the students to record in the Dairy. Identify the type of Chips formed and record in the dairy
3	02	01	1. Grinding- Abrasives- Applications of Natural abrasives- stand stone (Quartz), Corundum and Emery Diamond and Garnets- Application of Manufactured Abrasives- Silicon Carbide, Aluminum Oxide Cubic boron Nitride 2. Explain – Grit, Grade, Structure, Bond, Type ISO Designation of Grinding Wheels 3. Tool Geometry-Tool materials and Designation-Tool life & Wear	Refer Table 1	1. Practice on Grinding machine 2 Grinding Practice of Single point tool as per tool Geometry

			Concept of Cutting speed-Depth of cut-Feed		
4	03	01	1.Introduction to Surface Texture-Indication of Roughness Symbols-Complete surface symbol chart, Grade and Numbers,- Tolerances- Unilateral and Bilateral 2.Introduction to Lathe-Types of lathe- Capstone and Turret Lathe, Automatic Lathe and others - Specification of a Center Lathe Cutting Fluids- Selection of cutting fluids- 3.Explain Work holding Devices- Tool Holding Devices	Refer Table 1	 Read and interpret the Surface finish and Tolerances in the given Production drawing. Identify the main Parts of Lathe and its functions Identify the movements in Lathe Parts Carriage Cross Slide Tail Stock Remove the Chuck from Spindle Nose and again mount on it Demonstration of holding Work piece in 3-Jaw and 4-Jaw chuck Idle operation of Lathe. Rotation of spindle in Clockwise and Counter clockwise direction Identify the Lubrication Parts in Lathe Set the Spindle speed - Feed -Lever Position.
5	03	01,02, 04	 Explain Plain turning, Step turning, Knurling and Chamfering Operations Prepare the Process plan as per the given drawing for Plain Turning, Step Turning, Knurling and Chamfering Estimate the Production cost per Piece as per the given drawing for Plain Turning, Step Turning, Knurling and Chamfering (Consider all Direct and Indirect costs) 	Refer Table 1	1. Read and Understand the given Drawing 2. Select the suitable Raw material 3. Fix the given material between headstock and Tail Stock after performing Facing and Countersinking. 4. Select the Speed and Feed 5. Select and set the appropriate cutting tools as per the sequence of operations 5 Perform all operations as per the process plan 6. Check the dimensions using measuring instruments 7. Observe and Identify the Chip Formation
6	03	01,02, 04	1.Explain Taper turning operations by different methods-Calculate Taper angles for	Refer Table 1	Read and Understand the given Drawing

			different Taper turning component Drawings 2. Prepare the Process plan as per the given drawing for Taper Turning 3. Estimate the Production cost per Piece as per the given drawing for Taper Turning(Consider all Direct and Indirect costs)		 2. Mark the required dimensions as per the given drawing for Taper turning 3. Fix the given material between headstock and Tail Stock 4. Select and Set the tools to perform Taper turning 5. Select the Speed and Feed 6. Perform the Taper Turning operations and record the machining time. 7. Measure the Taper angle in the given specimen using Bevel Protractor
7	03	01,04	1.Explain Thread cutting Mechanism a) Half Nut Mechanism b) Tumbler Gear Mechanism 2. Prepare the Process plan as per the given drawing for Thread cutting 3. Estimate the Production cost per Piece as per the given drawing for Thread cutting (Consider all Direct and Indirect costs)	Refer Table 1	1. Read and Understand the given Drawing 2.Fix the given material between headstock and Tail Stock 3.Select and Set the tools to perform Thread cutting operations 4.Select the Speed ,Feed and lubricant 5.Perform the thread cutting operations Measure the Pitch of the thread for the given specimen by using Pitch Gauge
8	04	01,04	1. Introduction to Milling – Types of milling machine - Specification of a Milling machine 2. Types of Milling cutters and their uses- Milling Cutter Nomenclature- Specification of Milling Cutter 3. Methods of Milling-Up Milling and Down Milling- Work holding devices	Refer Table 1	 Identification of Milling machine Parts and its Usage Demonstrate the working Principle of Milling machine and movements of Table and Arbor Setting of Vice and Job on the Table of Milling Machine Set the Cutter on the Arbor Illustrate the safety points to be observed while working on the Milling machine Identify and Select the different Milling Cutters Demonstrate the Up- milling and Down – Milling Process
9	04	01,02, 04	 1.Explain Plain Milling Operation 2 Prepare the Process plan as per the given drawing (Solid Block) for Plain Milling 3. Estimate the Production cost per Piece as per the given drawing for Plain Milling 	Refer Table 1	Perform Plain Milling of Six faces of a Solid Block Check the accuracy of the Job with suitable Measuring Instruments

			Operation (Consider all Direct and Indirect costs)		
10	04	01,02, 04,07	 Explain Key way and V- slot Operation Prepare the Process plan as per the given drawing for Key way and V- slot Estimate the Production cost per Piece as per the given drawing for Key way and V- slot 		Perform Milling of Keyway and V Slot Check the dimensional accuracy with suitable Measuring Instrument
11	04	01,02, 04,07	 Explain Gear cutting by Indexing Methods Prepare the Process plan as per the given drawing for Gear cutting Estimate the Production cost per Piece as per the given drawing for Gear cutting 	Study the latest technological changes in this course and present the impact of these changes on industry	1. Demonstrate Indexing Head 2. Set and Align Indexing Head with reference to the Job on Milling machine Table 3. Perform Gear Teeth on a Blank by Simple Indexing Method

12 04	01,02, 04,07	 Introduction to Drilling – Types of Drilling Machines-Specification of Drilling Machines-Specification of Drill Bit, Reamer, Die and Taps Nomenclature of Drill Bit, Reamer, Die and Taps- Standard sizes of Drill Bits Explain Operations performed in Drilling Machines- Drilling, Counter sinking, Reaming, Boring, Tapping Prepare the Process plan as per the given drawing and Estimate the Production cost per Piece as per the given drawing 		 Identification of Drilling machine Parts Demonstrate the working Principle of Drilling machine Set the Vice and Job on the Table of Drilling machine Illustrate the safety points to be observed while working on the Drilling machine Identify and Select the different Drill Bits Set the Drill bits on the spindle. Drill Equally spaced holes (Circular/Square/Rectangul ar plate) Finish the pre-drilled hole with a Reamer
13 01, 02, 03, 04 Total in hou	NG.	Demonstrate the manufacturing of following components using YouTube Videos 1. Fasteners 2. Propeller Shaft 3. Gears 4. Piston manufacturing Discuss and Prepare a Report on the videos Presented for each manufactured component.	13	Demonstrate the manufacturing of following components using YouTube Videos 1. Tube and Piston Rod Manufacturing. 2. Cylinder manufacturing etc., 3. Single point tool 4. Drill bits Etc. Discuss and Prepare a Report on the videos Presented for each manufactured component

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Coordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials						
01	Present a report on Machine safety Guidelines as per the Applicable standard Guidelines (CSA Standard Z 432-04 (R 2009)) including hazards associated with machines, Power tools, Machine Shop. Also Discuss general controls for reducing machine Hazards. https://ehs.utoronto.ca						

Discuss Common grinding Problems And their Remedies. Also discuss the need for Bala the Grinding Wheels https://www.Euromarcconz Whether it's granite for your countertops, backsplash, or floor tiles, making pristine curbe achieved with proper precautions, techniques, and specialized granite cutting tools making tiles and slabs of this hard rock. Discuss and present a report on those tools. Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	ncing
https://www.Euromarcconz Whether it's granite for your countertops, backsplash, or floor tiles, making pristine cut be achieved with proper precautions, techniques, and specialized granite cutting tools making tiles and slabs of this hard rock. Discuss and present a report on those tools. Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing	0
be achieved with proper precautions, techniques, and specialized granite cutting tools making tiles and slabs of this hard rock. Discuss and present a report on those tools. Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
making tiles and slabs of this hard rock. Discuss and present a report on those tools. Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	or
With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse Surface finish symbols in a Production Drawing	
Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse Surface finish symbols in a Production Drawing	
Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	in
06 https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Analyse Surface finish symbols in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Analyse Surface finish symbols in a Production Drawing	
Analyse Surface finish symbols in a Production Drawing	
Analyse Surface finish symbols in a Production Drawing	
oo Analyse Surface finish symbols in a Production Drawing	
00	
Demonstrate the various measuring instruments used in Machine Shop	
09 Demonstrate the various measuring instruments used in Machine Shop	
Collect the sample piece of various raw materials used in machine shop and Discuss the	 eir
mechanical, chemical and Physical properties	
incomment, entitled and i hysical properties	

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
		60			
	Semester End Examination	180	100	40	
		Total Marks	100		

5. Format for CIE written Test

Course Name		Machine Tool Technology	Test	I/II/III	Sem	III	
Course Code		20ME32P	Duration	80 Min	Marks	30	
Note: Answ	Note: Answer any one full question from each section. Each full question carries 10 marks.						
Section		Assessment Questions		Cognitive Levels(R/U/A)	Course Outcome	Marks	
T	1						
1	2						
TT	3						
II	4						
III	5						

6

Duration: 240Min

Duration: 240 Min

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) For CIE Skill Test-4

SL.	СО	Particulars/Dimension	Marks
No.			
1	03	 Question on Turning operations with Process plan, Production Cost of the product for a Given parameters Process plan includes Component Drawing ,process list and Tool selection=25marks Costing includes Raw material ,process and finding Total cost , selling Price and cost of scrap =25marks Performance of Turning and Taper turning operations(20+15)=35 marks Dimensional accuracy=05 Marks 	90
2	01,02,03	Portfolio evaluation based on the average of all Practice Sessions (1-6 weeks)	10
Total	 Manka	weeksj	100
Tota	l Marks		100

5. (b) For CIE Skill Test -5

SL.	СО	Particulars/Dimension	Marks
No.			
1	04	Question on Milling operations with Process plan and Production Cost of the product for a Given parameters • Process plan includes Component Drawing, process list and Tool	90
		 selection= 20marks Costing includes Raw material ,process and finding Total cost , selling Price and cost of scrap = 30marks Performance of Milling operations including Key/Slot/Gear teeth cutting operations (20+15)= 35 marks Dimensional accuracy=05 Marks 	
2	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
Total	Marks		100

6. Rubrics for Assessment of Activity (Qualitative Assessment)

			<i>y</i> (c		,		
Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
Average Marks= (8+6+2+2)/4=4.5							5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description				
1	Mechanical estimation and costing T.R.Banga and S.C.Sharma Khanna publishers				
2	Mechanical Estimation Malhothra				
3	Industrial Organization and Engineering Economics T.R. Banga and S.C.Sharma Khanna publishers				
4	Mechanical Estimation NITTTR Chennai NITTTR Chennai				
5	Mechanical costing and Estimation. Singh and Khan Khanna Publishers				
6	Process Planning & Cost Estimation M.Adithan New age International				
7	Rao, P.N., Manufacturing Technology, Vol I & II, Tata Mcgraw Hill Publishing Co., New Delhi, 1998				
8	Seropekalpakjian, Steven R Schmid Manufacturing Engineering and Technology- Pearson Education-Delhi				
9	Sharma, P.C., A Textbook Of Production Technology – Vol I And II, S. Chand & Company Ltd., New Delhi, 1996				
10	HMT – "Production Technology", Tata Mcgraw-Hill, 1998				

8. LIST OF SOFTWARES/ LEARNING WEBSITES:

- 1.http://calculatoredge.com/index.htm#mechanical
- 2.www.nptel.ac.in/courses/112105126/36
- 3.www.youtube.com/watch?v=T5gjkYvMg8A
- 4.www.youtube.com/watch?v=ESKoaZtoB1E
- 5.www.freevideolectures.com

9. SEE Scheme of Evaluation

SL. No.	СО	Particulars/Dimension	Marks
1	03,04	Question on Turning operations with Process plan and Production Cost of the product for a Given parameters • Process plan includes Component Drawing, process list and Tool selection= 20marks • Costing includes Raw material ,process and finding Total cost , selling Price and cost of scrap =25 marks • Performance of Operations =30marks • Dimensional accuracy=05 Marks OR Question on Milling operations with Process plan and Production Cost of the product for a Given parameters • Process plan includes Component Drawing, process list and Tool selection= 20marks • Costing includes Raw material, process and finding Total cost , selling Price and cost of scrap = 25marks • Performance of Milling operations including Key/Slot/Gear teeth cutting operations (20+10)= 30 marks • Dimensional accuracy=05 Marks	80
2	01,02, 03,04	Viva voce	20
	Total N	Marks	100

Duration: 180min

10. Equipment list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Center lathe With all accessories and attachments(Gear driven)	Max 50mm Dia Holding capacity 500mm Center distance .Swing over dia 200mm	20
02	HSS cutting tool	20*20*150MM	40
03	HSS cutting tool	10*10*150MM	20
04	Cemented carbide tipped tools with holder brazed	For turning	20
05	Knurling tool Rough	Standard	10
06	Knurling tool Smooth	Standard	10
07	Vernier calipers	300mm	20
08	Outer caliper	5omm OD	20
09	Steel scale	300mm	20
10	Dial gauge for setting of work	Standard	10
11	Counter sunk Drill Bit	6mm Taper shank	20
12	Hnto 24mm		01
13	Sensitive Drilling Machine	Upto 18mm drill	01
14	Machine Vice (To hold Job)	120mm Jaw Gap	05
15	Drill Bit set	6mm to 24mm	10 set
16	Marking Divider	200mm dia	
17	Marking punch	Standard	20nos
18	Combination Set Square	Standard	10 nos
19	Surface plate	300*300mm	01 no
20	Column and Knee type Vertical MILLING machine With all attachments	.Table Travel of 800mm .24mm cutters Bore dia (ID)	01no
21	Plain milling Cutter 24mm ID/Slab milling	Standard Size for Practice	05
22	Key way cutter	6mm	10
23	Key way cutter/Slot cutter	12	10
24	Gear cutter (Spur teeth)	Standard Size for Practice	10
25	Concave Milling cutter	Standard for Size Practice	10
26	Convex Milling cutter	Standard Size for Practice	10
27	Key way Milling cutter	40mm dia	10
28	End Milling Cutter	24mm dia	10
29	Bench Grinder	300mm wheel dia Rough and Smooth	02

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	III
Course Code	20ME33P	Type of Course	Programme Core
Course Name	Manufacturing Processes	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: Diploma Engineers are responsible for supervising production processes to achieve production targets and for optimal utilization of resources. For this purpose, knowledge about various manufacturing processes is essential. This requires training the students in casting and metal forming domain so as to equip them with adequate theoretical and practical knowledge about the various metal casting and forming processes like rolling, forging, drawing, extrusion, Sheet metal work etc. Hence this course is introduced to provide hands on experience on various manufacturing processes.

2. Course Outcomes: At the end of the Course, the student will be able to

CO-01	Produce patterns, moulds, and casting of a given component drawing and estimate the cost of casting.
CO-02	Demonstrate forging operation for a given component drawing and estimate the cost of forging.
CO-03	Prepare sheet metal drawing, demonstrate sheet metal operation and estimate the costs of Sheet metal operation.
CO-04	Explain rolling and extrusion operation and list applications of metals forming processes.

3. Course Content

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	CO	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	01,04	 Introduction to foundry – You tube videos on foundries Explain the safety Precautions to be taken in foundries Explain the need of a Pattern- Types of Patterns—Solid or Single Piece pattern, Split Pattern, Loose Piece Pattern, Match Plate Pattern, Gated Pattern, Sweep Pattern, Skeleton-Pattern Allowances- Materials used for Pattern 	Refer Table 1	1.Identify the tools and equipment used in foundry with application 2. Prepare a single Piece wooden Pattern considering all allowances
2	01	01,04	1.Molding Sand-Types 2.Ingredients and Properties of Molding Sand	Refer Table 1	1.Prepare a molding sand 2. Preparation of Mold with the help of Pattern

			3. Importance of Core and Core prints-Gates-Runner-Riser		3. Melt the metal (wax) and pouring it into the mold cavity
3	01	01,04	Explain Defects in Casting Inspection of Casting Determination of Production Cost of a given material considering Raw material, Process cost, Overheads and other expenses	Refer Table 1	 Cutting Runner and riser in the casted component Cleaning of the casted component Inspection of the casted component Record the defects, if any
4	02	01,04	1.Introduction to basic Metal Forming Process and Applications- Show You tube Video's on Metal Forming Process 2. Explain Hot and Cold Working Process with Application Show You tube Videos on Hot and Cold Working Process 3.Introduction to forging operation- Types of forging- Hand forging and Power forging	Refer Table 1	1.Demonstrate safety precautions to be followed in Forging 2. Identify the tools and equipment's used in forging 3. Forging Practice (Hammering)
5	02	01,04	1.Explain forging Operations - Upsetting, drawing down, Cutting, Bending 2. Explain Punching and Drifting, Setting down and Finishing, Forge Welding 3 Estimation of Length of Raw material required to convert Circular rod to Square and Calculate the Production Cost considering direct and Indirect expenses.	Refer Table 1	Conversion of Circular rod to Square
6	02	01,04	1. Estimation of Length of Raw material required to convert Circular rod to Hexagon and Calculate the Production Cost considering direct and Indirect expenses. 2. Explain the working principle of Power hammer 3. Show the you tube videos on components produced by Power forging	Refer Table 1	Conversion of Circular rod to Hexagon
7	02	01,04	 Estimation of Length of Raw material required to convert Hexagon to" L" shaped Nail and Calculate the Production Cost considering direct and Indirect expenses Explain Forging losses-Forging Defects 	Refer Table 1	Conversion of Hexagon to " L" Nail as per the given drawing

			3. Show the you tube videos on components produced by forging		
			operations		
			1.Introduction to sheet metal- Show You tube videos on sheet metal operations and Applications		Identify and demonstrate the various tools used for sheet motal energians.
8	03	01,04	2.Explain sheet metal materials – Standard Gauges of sheet - Specification of Sheet	Refer Table 1	sheet metal operations. 2. Measure the gauges of sheet 3. Demonstrate the
			3.Explain different Sheet metal operations		operations performed on Shearing machine
			1.Explain the Development of Cone		
			and Cylinder		1. Prepare Cone, Cylinder, Prism, Pyramid and
9	03	01,04	2. Explain the Development of Prism and Pyramid	Refer Table 1	Funnel
			3. Explain the Development of Funnel		2. Join end surfaces by means of Seam Joint
			1.Explain the Development of Tray		1. Prepare a Tray
			1.Explain the Development of Tray		1. Trepare a Tray
10	03	01,04	2.Explain the Development of Transition pieces	Refer Table 1	2. Prepare any Transition Piece
			3. Explain the Development of Transition pieces		
11	03	01,04 07	 Find the total Production cost of a sheet metal components like Open container, Cylindrical Drum Introduction to Power Press -Press size- Press tools - Die Accessories 		 Present You tube Videos on Press work operations Record the observations made
			3. Types of Die and its		and prepare a report.
			operations 1.Introduction to Rolling- Nomenclature of Rolled Products-	Study the latest	
12	04	01,07	Dies used in rolling process 2.Types of Rolling mills-2 high mill- 3 High mill – 4 High mill- Cluster mill, Tandem Mill, Planetary mill, Defects in Rolling 3. Introduction to Extrusion and Drawing – Types of Extrusion Process. Wire and Tube Drawing Process, Dies used in Extrusion	technological changes in this course and present the impact of these changes on industry	Video/ Virtual exposure on Rolling and Extrusion
			and Drawing Process Demonstrate the manufacturing of		Demonstrate the
13	04	01,07	following components using YouTube Videos 1. Crank Shaft 2. Valves		manufacturing of following components using YouTube Videos 1. TMT Steels
			3. Wheel4. Gear case5. Hair springs		 Channel sections Pump Casings Rolling of Sheets

	Discuss and Prepare a Report on the videos Presented for each manufactured component		5. Tooth paste tube 6. Pipes 7. Tubes etc., Discuss and Prepare a Report on the videos Presented for each manufactured component
Total in hours	39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Coordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
	From heavy casting of 300Kg to small casting of 30 kg, investment casting method is used for as wide for hi-tech industrial applications. Investment casting is largely relied on for
01	complicated designs that cannot be casted using any other method. Discuss. Also, Present the
	Preparation of Patterns for the Process. Compare the relative surface finish of this process with other Casting Processes.
	Discuss the forging defects commonly occurring in forgings, their causes and Remedies.
02	Present the methodology for measuring Forging defects.
	https:// studentlesson.com
03	A Gas cylinder is produced by Sheet metal operations. Prepare the development and Present
03	the procedure involved in making the given component.
04	Identify the forming process adopted in making Tooth Paste Tubes. Present the process. List
04	the limitations involved and solutions to overcome these limitations.
05	Estimation of Length of Raw material required for a forged bolt and Calculate the Production
05	Cost considering direct and Indirect expenses.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
				al CIE Marks	60
Semester End Examination (Prac			180	100	40
		100			

5. Format for CIE written Test

Course Nam	e Name Manufacturing Processes		I/II/III	Sem	III/IV
Course Code	20ME33P	Duration	80 Min	Marks	30
Note: Answe	Note: Answer any one full question from each section. Each full question carries 10 marks.				
Section Assessment Questions			Cognitive Levels	Course Outcome	Marks

I	1		
	2		
11	3		
11	4		
111	5		
III	6		

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

Duration: 240 Min

Duration: 240 Min

5. (a) For CIE Skill Test - 4

SL.	СО	Particulars/Dimension	Marks
No.			
1	01	Question on Casting Process With Process plan, Costing of the product for a Given parameters including pattern, melting and other expenses • Process plan including Component Drawing ,process list and Tool/Equipment's selection= 15 marks • Preparation of Mold by using Pattern=25 Marks • Costing including Raw material ,process and finding Total cost , selling Price =25 Marks • Operation performed =20 marks • Dimensional accuracy = 05 Marks	90
2	01	Portfolio evaluation based on the average of all Practice Sessions (1-6 weeks)	10
Total	Marks		100

5. (b) For CIE Skill Test -5

SL.	СО	Particulars/Dimension	Marks
No.			
1	02	 Question on Forging operation with Process plan, Calculation of Raw material Length, Costing of the product for a Given parameters considering all Possible Losses. Process plan including Component Drawing ,process list and Tool/Equipment's selection= 15 marks Costing including Raw material length ,process time and finding Total cost , selling Price = 25 marks Operations Performed with Dimensional accuracy= 20Marks. 	60
2	03	One Skill oriented Question on Sheet Metal work • Development for a given drawing =20 Marks • Sheet metal Operation with Dimensional accuracy =10 marks	30
3	02,0 3	Portfolio evaluation based on the average of all Practice Sessions (7-12 weeks)	10
Total	l Marks		100

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6

3	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
			Aver	age Marks= (8+	6+2+2)/4=4.5	5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Elements of Workshop Technology (Vols. 1 and II) by Hajra Chaudhary
2	Production Technology By R.K. Jain
3	Foundry Technology By O.P.Khanna
4	Engineering Drawing Vol-2 By K.R.Gopala Krishna
5	Engineering Drawing By N.D.Bhat

8. SEE Scheme of Evaluation

SL. No.	со	Particulars/Dimension	Marks
1	01,02	 One Skill oriented Question on Casting Process plan including Component Drawing ,process list and Tool/Equipment's selection= 15 marks Preparation of Mold by using Pattern=30Marks Other Operations performed =10 marks OR One Skill oriented Question on Forging operation with Process plan, Calculation of Raw material Length, Costing of the product for the Given parameters considering all Possible Losses. Process plan including Component Drawing ,process list and Tool/Equipment's selection= 20 marks Costing including Raw material length ,process time and finding Total cost , selling Price =25marks Operations Performed with Dimensional accuracy=10 Marks. 	55
2	03	One Skill oriented Question on Sheet Metal work • Development of product=15 Marks • Performance and Operation with Dimensional accuracy =10 marks	25
4	01,02,03,04	Viva voce	20
		Total Marks	100

9. Equipment list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Moulding box	300*300*100mm	20
02	Moulding Rammer	Standard size	20
03	Moulding tool kit	Standard size	20
04	Electric furnace for melting (Wax/Low melting point metal with crucible and ladder for pouring)	Standard size	04
05	Portable grinder for cleaning of casting	Standard size	02
06	Sand Blaster	Standard size	04
07	Ball peen Hammer	½ lb	05
08	Pattern Making Tool kit	Standard size	10
09	Anvil For Forging	Standard size	05
10	Sledge hammer	2 LB	10

Duration: 180 Min

11	Hand hammer	1 lb	10
12	Flatteners	Standard size	20
13	Flat Tongs	Standard size	20
14	Round Tongs	Standard size	20
15	Steel scale	300mm	20
16	G I Bucket for Quenching	15 lts capacity	10
17	Open Heart Furnace with stand and Blower	Standard size	04
18	Hot Chisel	24mm size	10
19	Sheet shearing Machine(Manual or M/c type)	Standard size	04
20	Sniper for cutting sheet	Standard size	20
21	Metal stake	Standard size	10
22	Wooden mallet	Standard size	20
23	Plastic Hammer	Standard size	20
24	Bench vice for Bending of sheet	Standard size	05
25	Brazing Gun	Standard size	10

Government of Karnataka

Programme	Mechanical Engineering	Semester	III
Course Code	20ME34P	Type of Course	Programme Core
Course Name	Fluid Power Engineering	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

1. Rationale: Fluid power is one of the basic building blocks of modern automation and is most widely used system to convert fluid energy into useful work through the use of pump, compressor, control valves, actuators and other controlling elements. This technology is used to power a range of items such as tools, construction equipment and machineries, automotive and machineries in manufacturing sectors. Fluid power engineering involves study of properties of fluids, laws governing flow of fluids, working principles of fluid machineries and knowledge of control of machine movements. This course allows the students to develop the knowledge and understanding of the operational requirements of fluid power system and be able to recognise circuit components and build the circuits for applications needed in daily life

2. Course Outcomes: At the end of this course, student will be able to

CO-01	Measure fluid discharge through Channels and Pipes using instruments and estimate the size of the pipe needed for a given population size.
CO-02	Select the right hydraulic machinery to be used in a specific application for a given head and discharge.
CO-03	List the various components and its use in a given fluid power system.
CO-04	Build a simple fluid power system for a given application

3. Course Content

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	СО	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	01,04	 Explain classification and Properties of fluids- Units- Conversion of Cubic meters- Liters – Gallons -TMC Explain Pascal Law, Equation of continuity, Concept of Total Energy Explain Bernoulli's equation and its Applications- Venturi meter, Pitot tube, Orifice meter 	Ref Table 1	1.Find Discharge of a fluid through Venturimeter
2	01	01,04	 Explain Discharge through Rectangular Notch -Numerical Problems Explain Discharge through V- notch - Numerical Problem Explain Flow through Pipes- Major and Minor Losses 	Ref Table 1	1. Finding Discharge through Rectangular Notch 2. Finding Discharge through V- Notch

3	01	01,04	 Determine co-efficient of friction by using Chezy's and Darcy's formulae Design a Pipe for a given number of Inhabitants Design a Pipe for a given discharge 	Ref Table 1	1.Finding Co-efficient of Friction in Pipes2. You tube presentation on fluid flow through pipes and notches
4	02	01,02,04	 Classification of Pumps Explain the Working Principle of Centrifugal Pump and its Application Explain the Working Principle of Monoblock and its Application 	Ref Table 1	 Find the discharge through Centrifugal Pump Servicing and Repair of Centrifugal Pumps
5	03	01,02,04	1.Explain the Working Principle of Submersible pump and its application 2.Explain the Working Principle of Reciprocating pump and its application 3. Select a suitable Pump for a given Application	Ref Table 1	Servicing and Repair of Submersible pumps
6	02	01,04	1.Classification of Hydraulic Turbines2.Select a suitable Turbine for a given Head3. Explain the Working Principle of Impulse Turbine and its Application	Ref Table 1	Determine Performance of Pelton wheel
7	02	01	 Explain the Working Principle of Reaction Turbine and its Application Explain the Importance of Draft tube, Penstock and Surge Tank Video on Hydraulic Power Plant 	Ref Table 1	Video on fluid flow from source to End application Eg: Oil Refineries, Hydraulic Power plant, Water distribution through pipe lines
8	03	01	Identify the basic components of Fluid power Systems with Symbols and Application • Air compressor • Air Drier • FRL Unit • Gear Pump • Pressure control Valve- Pressure Reducing Valve, Pressure Intensifier • Direction control Valves - 3/2, 5/2, 4/2 • Flow control Valve • Needle Valve • Check Valve • Shuttle Valve • Quick Exhaust Valve • Time Delay Valve	Ref Table 1	Video on Working principles of components used in Fluid Power Systems
9	03	01	 Explain Valve Actuating mechanisms Spring, Lever, Push button, Solenoid Explain the role of Accumulators in fluid power systems. Explain working principle of Actuators- Single Acting, Double acting Air Cylinders, Air Motors 	Ref Table 1	Video on Working principles of components used in Fluid Power Systems

Total i	n hou	ırs	39	13	52
13	04	01,07	 Build Circuit for a machine device driven by a single acting cylinder with actuation at least two mutually operated DC valves (Safety circuit with OR and AND Gates) Build Circuit for the Clamping Device of a Drilling Machine of a Drilling machine such that the clamps are activated before the drill is fed to the Work Build a Circuit for your Own Application 		Execute minimum 2 Circuits Practiced in the Class using Trainer Kit or Simulation Software, including developing your Own Pneumatic Circuit to perform certain function
12	04	01,03,07	 Build a Fluid Power circuit for Automatic reciprocating motion of a double acting Cylinder Build a circuit for feeding a strip with following sequences: Holding the strip, moving the strip forward on to the tool, maintaining the strip in that position and returning the strip to its original position after work is over. Design a Circuit to press fit a pin to a hole with a precondition that while actuating of the cylinder, both the hands of the operator should be engaged 	Study the latest technological changes in this course and present the impact of these changes on industry	Execute minimum 2 Circuits Practiced in the Class using Trainer Kit or Simulation Software
11	04	01,04,07	 Build a Fluid Power circuit for double Acting Cylinder being controlled by 4/2 DC Solenoid Operated Valve Build a Circuit for Stamping operation by using 3/2 DC Valve with Single Acting Cylinder Build a Circuit for Automatic Opening and Closing of Door by /using double Acting Cylinder being controlled by 4/2 DC Valve 		Execute minimum 2 Circuits Practiced in the Class using Trainer Kit or Simulation Software
10	04	01,04	 Build a Fluid Power circuit to Control Speed of a Single Acting cylinder Build a Fluid Power circuit to Control Speed of a Double Acting cylinder Build a Fluid Power circuit for Pilot control Double Acting Cylinder 	Ref Table 1	Execute the circuit Practiced in the Class using Trainer Kit or Simulation Software
			Explain the importance of Seals and Packages		

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
	Document and present the application of Pascal's Principle in Real Life by selecting Hydraulic
01	Jack/Hydraulic Brakes/ Hydraulic Lift
	https://www.studiousguy.com
02	Present a report on possible failures in Submersible Pumps and trouble shoot the same.
03	Discuss and present the application of Pneumatics in farming using case study: Farming in
03	California- The issues and Positivity's
04	Build and Present an Electro-Pneumatic Brake system used in Trains. Also, document Brake
04	Cylinder Pressure effect.
05	Prepare a line Diagram of the pipe line of your Residence or College
06	Prepare a water distribution line diagram from Water reservoir to college
07	Prepare a line diagram for rain water harvesting of your Residence or College
08	Study and prepare a report on water distribution in Dip Irrigation System.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Avorage of three tests
2.	CIE-2 Written Test	9	80	30	Average of three tests 30
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
		60			
	Semester End Examination (Practice)			100	40
		100			

5. Format for CIE written Test

Course Name		Manufacturing Processes	Test	I/II/III	Sem	III/IV
Course Coo	de	20ME33P	Duration	80 Min	Marks	30
Note: Ansv	ver a	ny one full question from each section. Ea	ach full ques	tion carries	10 marks.	
Section		Assessment Questions		Cognitive Levels	Course Outcome	Marks
т	1					
I	2					
II	3					
11	4					
111	5					
III	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a)For CIE Skill Test -4

SL.	CO	Particulars/Dimension	Marks
No.			
1	01	One Experimental Question on case related to Application of Bernoulli's theorem (Venturimeter/Orifice/Pitot tube) (Group of 5 Students) • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations 15 Marks	45

Duration: 240 Min

		Conduction of Experiment 10 Marks	
		Calculation and Result 10 Marks	
2	01	One Experimental Question on Channels/ Pipes (Group of 5 Students)	45
		Writing observations and Tabular column 10 Marks	
		 Writing Equations required With all notations 15 Marks 	
		 Conduction of Experiment 10 Marks 	
		Calculation and Result 10 Marks	
3	01	Portfolio evaluation based on the average of all Practice Sessions (1-6	10
		Weeks)	
	Total Marks		100

5. (b) For CIE Skill Test -5

SL.	CO	Particulars/Dimension	Marks
No.			
1	03,04	Two Skill based Question to Design a Pneumatic Circuit for the given case (Individual Experiment) = 45 Marks each • Writing Circuit Diagram with all components-25 marks • Building Circuit on the Kit -10marks • Showing the Result/output - 10 Marks	90
2	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
Total	Marks		100

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Bansal. R.K., "Fluid Mechanics and Hydraulics Machines", 9th Edition, Laxmi
1	Publications Private Limited, New Delhi. 2011.
2	R.S.Khurmi, "Fluid Mechanics and Machinery", S.Chand and Company, 2nd Edition, 2007.
3	Hydraulics & Pneumatics - Andrew Parr, Jaico Publishing House New Delhi.
	Hydraulic and Pneumatic Controls Understanding Made Easy- K.S.Sundaram,- S.chand Company
4	Delhi
	Ramamrutham. S, "Fluid Mechanics, Hydraulics and Fluid Machines",
5	Dhanpat Rai & Sons, Delhi, 2004.
6	P. N Modi and S. M. Seth, "Hydraulics and Fluid Mechanics Including Hydraulics Machines", 19th
	Edition, Standard Book House, 2013

Duration: 240 Min

7	Hydraulic and Pneumatic Controls- Srinivasan, R Vijay Nicole Imprints Private Limited, 2/e, 2008
8	Pneumatic And Pneumatics Controls -Understanding Made Easy - K.S.Sundaram,-S.chand Company Delhi
9	Pneumatic Systems - Majumdar, S.RTata McGraw-Hill Publication, 3/e, 2013

8. LIST OF SOFTWARES/ LEARNING WEBSITES:

- 1. www.youtube.com/watch?v=VyR8aeioQrU
- 2. http://www.youtube.com/watch?v=R6 q5gxf4vs
- 3. www.howstuffworks.com
- 4. . http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/machine/ui/TOC.htm
- 5. https://www.youtube.com/watch?v=F 70hKUYV5c&list=PLE17B519F3ACF9376
- 6. https://www.youtube.com/watch?v=z0]6gWDMTfE&list=PLC242EBB626D5FFB5
- 7. http://www.youtube.com/watch?v=0p03UTgpnDU
- 8. http://www.youtube.com/watch?v=A3ormYVZMXE
- 9. http://www.youtube.com/watch?v=TjzKpke0nSU
- 10. http://www.youtube.com/watch?v=vl7GteLxgdQ
- 11. http://www.youtube.com/watch?v=cIdMNOysMGI
- 12. www.boschrexroth.co.in
- 13. http://www.automationstudio.com/
- 14. http://www.howstuffworks.com/search.php?terms=hydraulics
- 15. http://hyperphysics.phy-astr.gsu.edu/hbase/fluid.html#flucon
- 16. http://www.youtube.com/watch?v=FVR7AC8ExIM
- 17. http://www.youtube.com/watch?v=iOXRoYHdCV0
- 18. http://www.youtube.com/watch?v=qDinpuq4T0U
- 19. http://www.youtube.com/watch?v=xxoAm3X4iw0
- 20. www.festo.com
- 21. www.boschrexroth.co.in
- 22. www.nptel.iitm.ac.in
- 23.http://www.howstuffworks.com/search.php?terms=pneumatics

9. SEE Scheme of Evaluation

	7. SEE SCHEINE OI EVAIUAUON DUTAUON				
SL.	CO	Particulars/Dimension	Marks		
No.					
1	01	One Experimental Question on case related to Application of Bernoulli's theorem (Venturimeter/Orifice/Pitot tube) (Group of 5 Students) • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations15 Marks • Conduction of Experiment 10 Marks • Calculation and Result 1 5 Marks OR One Experimental Question on Channels/Pipes (Group of 5 Students) • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations1 5 Marks • Conduction of Experiment 10 Marks • Calculation and Result 15 Marks	50		
2	03,04	One Skill based Question to Design a Pneumatic Circuit for the given case (Individual Experiment)	30		

Duration :180 Min

		 Writing Circuit Diagram with all components-20 marks Building Circuit on the Kit and Result -10 marks 	
3	CO1,CO2,CO3,CO4	Viva voce	20
	Total Marks		100

10 Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Bench mounted Test Rig for Venturi meter		01
02	Bench mounted Test Rig for Notches		01
03	Bench mounted Test Rig for Friction through pipes		01
04	Centrifugal Pumps FOR Maintaines and Servicing	Used one	02
05	Mano block Pumps FOR Maintenance and Servicing	do	02
06	Submersible Pumps FOR Maintenance and Servicing	do	02
07	Pneumatics Trainer Kit with all standard accessories.	Standard size	
08	Compressor for Pneumatics Trainer Kit	6 Bar pressure Single phase 50 Hz	01
09	Hose pipes for Pneumatics Trainer Kit		
10	Bench mounted Test Rig for Pelton wheel	Standard size	01

ಮೂರನೇ ಸೆಮಿಸ್ಟರ್

ಕನ್ನಡ ಬಲ್ಲ ಡಿಪ್ಲೋಮಾ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

(ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ, ಸಂಸ್ಕೃತಿ ಮತ್ತು ಪರಂಪರೆ ಕುರಿತು)

Course Code	20KA31T	Semester: III	Course Group - AU	
Course Title	ಸಾಹಿತ್ಯ ಸಿಂಚನ - 2	Category : Audit	Lecture Course	
No. of Credits	2	Type of Course	CIE Marks : 50	
Total Contact Hours	02 Hrs Per Week 26 Hrs Per Semester	Prerequisites Teaching Scheme (L:T:P)= 2:0:0	SEE Marks : Nil	

ಸಾಹಿತ್ಯ ಸಿಂಚನ – 2 ಪಠ್ಯಕ್ರಮ - 20KA31T

26 ಗಂಟೆಗಳು

ಪಠ್ಯಕ್ರಮದ ಪರಿವಿಡಿ	ಬೋಧನಾ ಅವಧಿ
 ಹೊಸಗನ್ನಡ ಸಾಹಿತ್ಯ ಚರಿತ್ರೆಯ ಪ್ರಭಾವಗಳು ಮತ್ತು ಪ್ರೇರಣೆಗಳು 	01 ಗಂಟೆ
2. ಹೊಸಗನ್ನಡ ಕಾವ್ಯದ ಪ್ರಕಾರಗಳು -	02 ಗಂಟೆ
 ನವೋದಯ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. ನವ್ಯ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. 	03 ಗಂಟೆ 03 ಗಂಟೆ
 ಬಂಡಾಯ ಮತ್ತು ಪ್ರಗತಿಪರ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. ದಲಿತ ಸಾಹಿತ್ಯ, ಮಹಿಳಾ ಸಾಹಿತ್ಯ, ವಿಜ್ಞಾನ ಸಾಹಿತ್ಯ ಮತ್ತು ಇತ್ತೀಚಿನ ಪ್ರಚಲಿತ 	03 ಗಂಟೆ
ಕನ್ನಡ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು.	03 ಗಂಟೆ
3. ವೈಚಾರಿಕತೆ ಕುರಿತಾದ ಲೇಖನ - ಜಿ ಎಸ್. ಶಿವರುದ್ರಪ್ಪ	01 ಗಂಟೆ
4. ಕಥೆ - ನೇವಿುಚಂದ್ರ	01 ಗಂಟೆ
5. ಪ್ರವಾಸ ಕಥನ - ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ ರವರ (ಕುಪ್ಪಳ್ಳಿ ಡೈರಿ ಪುಸ್ತಕದಿಂದ)	01 ಗಂಟೆ
6. ಪರಿಸರ, ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನ ಕುರಿತಾದ ಲೇಖನಗಳು	01 ಗಂಟೆ
7. ಪ್ರಬಂಧ - ಗೊರೂರು ರಾಮಸ್ವಾಮಿ ಅಯ್ಯಂಗಾರ	01 ಗಂಟೆ
8. ಪ್ರಚಲಿತ ವಿದ್ಯಮಾನಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಲೇಖನ - "ಪೇರು ಮಾರುಕಟ್ಟೆ ಮತ್ತು ಹಣಕಾಸು ನಿರ್ವಹಣೆ" ಕುರಿತಂತೆ	01 ಗಂಟೆ
9. ಕರ್ನಾಟಕ ಏಕೀಕರಣ ಚಳುವಳಿ - ಪ್ರೊ. ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ	01 ಗಂಟೆ
10. ಕನ್ನಡ ಸಿನಿಮಾರಂಗ ಬೆಳೆದು ಬಂದ ದಾರಿ ಮತ್ತು ನಾಡು-ನುಡಿ ಹಾಗೂ ನಾಡಿನ ಸಂಸ್ಕೃತಿಯ ಮೇಲೆ ಬೀರಿದ ಪ್ರಭಾವಗಳು	01 ಗಂಟೆ
11. ಕನ್ನಡದ ಸಾಮಾಜಿಕ ಉಪಭಾಪೆಗಳು (ಭಾಪಾ ಪ್ರಭೇದಗಳು)	01 ಗಂಟೆ
12. ಆಧುನಿಕ ಕನ್ನಡ ಸಾಹಿತ್ಯ ಚರಿತ್ರೆಯ ಒಂದು ಅವಲೋಕನ	02 ಗಂಟೆ
ಒಟ್ಟು ಬೋಧನಾ ಅವಧಿ 26 ಗಂಟೆಗಳು	26 ಗಂಟೆ

ಕನ್ನಡ ಬಾರದ / ಕನ್ನಡೇತರ ಡಿಪ್ಲೋಮಾ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಕನ್ನಡ ಕಲಿಸಲು ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

Course Code	20KA31T	Semester : III	Course Group - AU
Course Title	ಬಳಕೆ ಕನ್ನಡ – 2	Category : Audit	Lecture Course
No. of Credits	2	Type of Course	CIE Marks : 50
Total Contact Hours	2 Hrs Per Week	Prerequisites Teaching	SEE Marks: Nil
	26Hrs Per Semester	Scheme (L:T:P)= 2:0:0	

ಬಳಕೆ ಕನ್ನಡ – 2 ಪಠ್ಯಕ್ರಮ - 20KA31T

Table of Contents (ಪರಿವಿಡಿ)

26 ಗಂಟೆಗಳು

Part - 1	Teaching Hour
Necessity of learning a local language (Continuation). Tips to learn the language with easy methods (Continuation). Easy learning of a Kannada Language: A few tips (Continuation). Hints for correct and polite conversation (Continuation). Instructions to Teachers for Listening and Speaking Activities (Continuation). Instructions to Teachers for Reading and Writing Activities (Continuation). Part – II Key to Transcription for Correct Pronunciation of Kannada Language (Continuation).	01 Hour 02 Hour
Instructions to Teachers to teach Kannada Language (Continuation).	02 Hour
Part – III Lessons to teach Kannada Language (Speaking, Listening, Reading and Writing Activities with Explanation	0
Lesson – 1 Personal Pronouns, Possessive Forms, Interrogative words – Part II	02 Hour
Lesson - 2 Permission, Commands, encouraging and Urging words (Imperative words and sentences) - Part II	02 Hour
Lesson – 3 Comparative, Relationship, Identification and Negation Words – Part II	02 Hour
Lesson - 4 Different types of forms of Tense (Use and Usage of Tense in Kannada) - Part II	02 Hour
Lesson – 5 Kannada Helping Verbs in Conversation (Use and Usage of Verbs) – Part II	02 Hour
Lesson - 6 Formation of Past, Future and Present Tense Sentences with Changing Verb Forms	02 Hour
Lesson – 7 Karnataka State and General Information about the State	02 Hour
Lesson – 8 Kannada Language and Literature	02 Hour
Lesson – 9 Do's and Don'ts in Learning a Language	02 Hour
PART - IV Reading and writing Practice of Kannada Language	
Lesson - 10 Kannada Language Script Part - 1	02 Hour
Lesson - 11 Kannada Language Script Part - II (Continuation)	02 Hour
Lesson – 12 Kannada Vocabulary List : ಸಂಭಾವಣೆಯಲ್ಲಿ ದಿನೋಪಯೋಗಿ ಕನ್ನಡ ಪದಗಳು - Kannada Words in Conversation (Continuation).	01 Hour
Total Teaching Hours	26 Hou

ಸಾಹಿತ್ಯ ಸಿಂಚನ ಭಾಗ - II ಮತ್ತು ಬಳಕೆ ಕನ್ನಡ ಭಾಗ - II ಈ ಎರಡು ಪಠ್ಯಕ್ರಮಗಳಿಗೆ CIE - ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನದ ಮಾರ್ಗಸೂಚಿಗಳು:

(Course Assessment and Evaluation Chart - CIE only)

Sl. No	Assessment	Туре	Time frame in semester	Duration In minutes	Max marks	Conversion	
1.	CIE- Assessment - 1	Written Test - 1	At the end of 3 rd week	80	30	Average of three written	
2.	CIE- Assessment - 2	Written Test - 2	At the end of 7 th week	80	30	tests: 1, 2 & 3 for 30 Marks	
3	CIE- Assessment - 3	Written Test - 3	At the end of 13 th week	80	30		
4.	CIE- Assessment - 4	MCQ/Quiz	At the end of 5 th week	60	20	Average of three	
5	CIE- Assessment - 5	Open Book Test	At the end of 9 th week	60	20	Assessment tests: 4,5 & 6 for 20 Marks	
6	CIE- Assessment - 6	Nent - 6 Work book Consolidation & At the end 11 th week Activities		60 (Work book Submission)	20	101 20 Walks	
	Total CIE - Continuous Internal Evaluation Assessment Marks						
	50						

ಸೂಚನೆ: 1.CIE - ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನದ 1, 2 ಮತ್ತು 3 ರ ಕಿರು ಪರೀಕ್ಷೆಗಳನ್ನು ಮತ್ತು ಮೌಲ್ಯಮಾಪನದ 4, 5 ಮತ್ತು 6 ರ ಪರೀಕ್ಷೆಗಳನ್ನು ಪ್ರತ್ಯೇಕ ಬ್ಲೂಬುಕ್ ಪುಸ್ತಕದಲ್ಲಿ ವಿದ್ಯಾರ್ಥಿಗಳು ಬರೆಯಬೇಕು.

^{2.}ಸೆಮಿಸ್ಟರ್ ಅಂತ್ಯದಲ್ಲಿ ವಿದ್ಯಾರ್ಥಿಗಳು, ತರಗತಿ ಕನ್ನಡ ಭಾಪಾ ಶಿಕ್ಷಕರಿಂದ ಮತ್ತು ವಿಭಾಗಾಧಿಕಾರಿ ಗಳಿಂದ ದೃಢೀಕರಣಗೊಂಡ ಕಾರ್ಯಪಠ್ಯಪುಸ್ತಕವನ್ನು (Work Book) ಮೌಲ್ಯಮಾಪನ ಭಾಗ-CIE- Assessment – 6 ರ ಪರೀಕ್ಷೆಯ ನಂತರ ಆಯಾ ವಿಭಾಗಕ್ಕೆ ಸಲ್ಲಿಸಬೇಕು.

4TH **SEMESTER**

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	IV
Course Code	20ME41P	Type of Course	Programme Core
Course Name	Operations Management	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: The success of any organisation not only depends on quality of its products and services but also depends on the people within it. Thus, an operational manager has to play a prominent role in an organisation with human capital and machines. Therefore, managerial skills are essential for enhancing their employability and carrier growth. This course is therefore designed to provide basic concepts in operations management, forecasting techniques, capacity planning, aggregate planning, master production schedule, quality, and inventory and supply chain management for effective utilisation of resources and competitive advantage through operational excellence

2. Course Outcomes: On Completion of course, the student will be able to:

CO-01	Prepare a production capacity utilization plan based on demand forecast and available production capacity for a given product.
CO-02	Prepare a master production plan based on a production capacity utilization plan and a material management plan for a given product.
CO-03	Prepare a process plan using time study, motion study and other appropriate methods to ensure process efficiency.
CO-04	Prepare a quality assurance plan based on a given quality model which is suitable for either a product or a service organisation.

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	CO	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	01	Introduction to Operation Management 1. Introduction to Operation Management - Operation Functions 2. Evolutions and Historical Events in Operational Management 3. Productivity and Competitiveness, Strategy and operation	Ref Table 1	Virtual TourOrganization (You tube)Problems onProductivity
2	01	01	DEMAND FORECASTING 1.Demand Forecasting- Demand Behavior-Trend Cycle - Seasonal Background - Steps in Forecasting Process 2. Short range and Long Range Forecast 3. Qualitative Forecast methods	Ref Table 1	• Qualitative Forecast - Delphi method, Market Research method • Quantitative Forecast - Time series Method a) Moving average (Naive forecast, Simple moving

1. Quantitative Forecast methods 2. Seasonal Adjustments 3. Forecast Accuracy CAPACITY AND AGGREGATE PLANNING 1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection – Batch , Mass ,Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	moving Average) Problems on b) Exponential smoothing Problems on • Capacity Planning, • Aggregate planning • Master production Schedule
3 01 01 2. Seasonal Adjustments 3. Forecast Accuracy CAPACITY AND AGGREGATE PLANNING 1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1.Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	b) Exponential smoothing Problems on Capacity Planning, Aggregate planning Master production
3. Forecast Accuracy CAPACITY AND AGGREGATE PLANNING 1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning-Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing-Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	Problems on • Capacity Planning, • Aggregate planning • Master production
CAPACITY AND AGGREGATE PLANNING 1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	Capacity Planning,Aggregate planningMaster production
PLANNING 1. Need for Capacity Planning - Capacity expansion Strategies - Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule	Capacity Planning,Aggregate planningMaster production
1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	Aggregate planningMaster production
FROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection - Batch, Mass, Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	<u>. </u>
5 01 01 Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1.Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	•Virtual Tour on Batch,
1.Motion Study 2. Man- Machine chart Ref Table 1	Mass and continuous Process • Develop an Operation Sheet indicating Process Plan and Process flow chart for a given
6 03 01 2. Man- Machine chart Ref Table 1	component.
6 03 01 Ref Table 1	•Develop Job Process chart with Process
Ref Table 1	Symbols for a given Process.
	 Develop Man- Machine chart for a given Process. Case study on Time Study Principles for a given process.
INVENTORY MANAGEMENT 1. Elements of Inventory Management- Inventory Costs-	Problems on
Carrying, Ordering and Shortage Costs 2 Inventory Control Systems	•ABC Classification
7 02 01 Continuous Inventory System (Fixed-Order-Quantity System) Periodic Inventory System (Fixed- Time-Period System)	System •Economic Order Quantity Models •The Production Quantity Model
3. Concept on ABC Classification, Economic Order Quantity Models, Production Quantity Model	Model
8 02 01,02 1. Order Quantity for A Periodic Inventory System Order Quantity with Variable Demand 2. JIT -Pull System 3 Kanban's System	Case study on JIT (Eg:Toyoto Production System)
Supply Chain Management 1.Supply Chains	
9 02 01 Supply Chains for Service Providers 2. Value Chains The Management of Supply Chains 3. Vendor Selection- Vendor	Study on

Total i	n hoı	ırs	39	13	52
			Six Sigma The Breakthrough Strategy: DMAIC		
13	13 04 04		1. TQM and QMS The Focus of Quality Management— Customers 2. Quality Management in The Supply Chain The Role of Employees in Quality Improvement Kaizen and Continuous Improvement Quality Circles 3. Process Improvement Teams		Practice on The Deming Wheel (PDCA Cycle) •Process Control Charts •Statistical Quality Control •ISO 9000 •ISO14000
12	02 01,07 Enterprise Resource 2. Warehouse Manage Collaborative Logistic Outsourcing 3. Finance/Accounting Sales/Marketing- Production/Materials Human Resources QUALITY MANAGEMI 1. Quality from The C Perspective Dimensions of Quality Manufactured Product Dimensions of Quality 2. Quality from The P Perspective A Final Perspective O The Cost of Quality The Cost of Achieving 3. The Cost of Poor Qu The Quality-Production		Dimensions of Quality for Manufactured Products Dimensions of Quality for Services 2. Quality from The Producer's Perspective A Final Perspective On Quality The Cost of Quality The Cost of Achieving Good Quality 3. The Cost of Poor Quality The Quality-Productivity Ratio Quality Management System	Study the latest technological changes in this course and present the impact of these changes on industry	Practice on Quality Tools • Process Flowcharts • 5 Whys, Cause-And- Effect Diagrams • Check sheets And Histograms • Pareto Analysis • Scatter Diagrams
11			Enterprise Resource Planning (ERP), 2. Warehouse Management Systems Collaborative Logistics, Distribution Outsourcing 3.Finance/Accounting- Sales/Marketing- Production/Materials Management-		Case study on Procurement- Outsourcing. •E-Procurement •E-Market places •ERP MODULES
10	02	01	1.Supply Chain Uncertainty and Inventory 2.E-Business, Electronic Data Interchange 3.Supply Chain Integration-Collaborative Planning, Forecasting, And Replenishment	Ref Table 1	 Study on Information Technology: Supply Chain Enabler Bar Codes Radio Frequency Identification Build-To-Order (BTO)
			evaluation and Vendor Development, Negotiations		

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials								
	Below are montl	hly sales of l	ight bulbs	from tl	ne lighting	store.			
		MONTH	Jan	Feb	March	April	May	June	
		SALES	50	200	80	40	360	,,,,,,	C T
	Forecast sales	JALLS	30	200	100	1 10	1 300		for June using
01	the following • Naive me	othod							
		eulou 10nth simple	moving a	verage					
		onth weight	_	_	e using w	reights c	of 0 .5. 0	.3 and 0.	2
		tial smooth	-			_			_
	Delph Manufacti	uring Comp	ny is goin	g to nu	rchase an	auto na	rts com	nonent fr	com one of two
									hain performance
	of the two suppl								
	work-in-process								
	suppliers								
	Items				oplier 1			pplier 2	
02		of goods solo	<u>d</u>		8,360,000	1		,800,000	
		naterials			0,000			0,000	
		-In-Progres	S		000			0,000	
		ned goods	1		000	1 . 1		0,000	
	performance acc								est supply chain
	company likely t						. Wilat (Julei lac	iors would tile
	The maintenance						as respo	onsibility	for maintaining
	an inventory of s								
	annual usage are			J		•			
			Unit						
		Part	Cost(Rs	:)	Annual U	Isage			
		1	100	,,	90				
03		2	350		40				
		3	30		130				
		4	20		180				
		5	320		50				
	The department		ontoto alo	aa:6-, 4la			ud:		ADC arratage to
	The department determine which	_		-				ng to the	Abc system to
	The design capa	city for engi	ne repair i	n our c	ompany is	80 truc	cks/day		
04	40 engines/day and the actual output is 36 engines/day. Calculate the utilization and efficiency								
04	of the operation. If the efficiency for next month is expected to be 82%, what is the expected								
	output?								
	_		•	•					ly inspection, 27
	worn or torn seats were found, 22 buses had dirty floors, there were 14 cases of exterior								
0.5		scratches and chipped paint, there were 8 cracked or broken windows, the engines on 4 buses had trouble starting or were not running smoothly, and 2 buses had faulty brakes. Develop a							
05	had trouble star Pareto chart for								
	categories. What	-				_			
	might these limi						ymgia	i cto tiidi	tanaiysis: 110W
06	Study and prepa						er Baza	ar	
07	Case study on Su								
08	Case study on us							to Awar	d of Degree)
									

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion		
1.	CIE-1 Written Test	5	80	30	Average of three		
2.	CIE-2 Written Test	9	80	30	tests		
3	CIE-3 Written Test	13	80	30	30		
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two		
5	CIE-5 Skill Test-Practice	12	180	100	skill test reduced to 20		
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10		
	Total CIE Marks						
	Semester End Examination (Practice)	180	100	40		
	100						

5. Format for CIE written Test

Course Na	Name Operation Management		Test	I/II/III	Sem	IV
Course Co	de	20ME41P	Duration	80 Min	Marks	30
Note: Ans	wer	any one full question from each section. I	Each full qu	estion carries 10	marks.	
Section	Assessment Questions			Cognitive Levels(R/U/A)	Course Outcome	Marks
,	1					
1	2					
II	3					
11	4					
III	5		·			
111	6	·				

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL.	СО	Particulars/Dimension	Marks
No.			
1	01	One Question- Problems/Case study on Demand forecasting/Master	45
		Scheduling/Capacity Planning	
2	01,03	Based on the given Case Study, Prepare a Job Process chart with Process	45
		Symbols/Develop a Man- Machine chart	
3	01,03	Portfolio evaluation based on the average of all Practice Sessions (1-6 Weeks)	10
Total	Marks		100

5. (b) For CIE Skill Test -5

SL.	СО	Particulars/Dimension	Marks
No.			
1	02	One Question on Inventory Management and Supply Chain Management (JIT/Kanban System /E- Business/)	45
2	04	For the given case study, Prepare the Cost of achieving good Quality using any quality Tools	45
3	02,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 weeks)	10
Total	Marks		100

Duration: 240Min

Duration: 240 Min

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Production and Operations Management - Creating Value along the Supply Chain By Russel and
1	Taylor , Wiley Publications , 7 Edition
2	Modern Production and Operation Management By Buffa and Sarin, Wiley Publications, 8 edition
3	Production and Operations Management By Chary, Tata Mc Graw Hill Publications
4	Production and Operations Management- Concepts, Models and Behaviour By Adam and Ebert,
4	Prentice Hall Publications

8. LIST OF SOFTWARES/ LEARNING WEBSITES:

- 1. <u>www.youtube.com/watch?v=SF53ZZsP4ik</u>
- 2. <u>www.youtube.com/watch?v=iPZlQ3Zx5zc</u>

9. SEE Scheme of Evaluation

SL.	СО	Particulars/Dimension	Marks
No.		,	
1	01,02,03	One Question- Problems/Case study on Demand forecasting/Master Scheduling/Capacity Planning OR Based on the given Case Study, Prepare a Job Process chart with Process Symbols/Develop a Man- Machine chart	40
2	03,04	One Theory Question on Inventory Management and Supply Chain Management (JIT/ Kanban System /E- Business/) OR For the given case study, Prepare the Cost of achieving good Quality using any quality Tools	40
3	01,0203,04	Viva voce	20
	Total Marks	S	100

10. Tools/ Equipment/ Software's Required

1.ERP Software

Duration: 180 Min

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	IV
Course Code	20ME42P	Type of Course	Programme Core
Course Name	CNC Programming and Machining	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: In recent years the manufacturing environment has undergone dramatic change. For achieving market goals, it is essential to produce quality parts in less time. Evolution of information technology, variety manufacturing concepts with zero lead time demand and quality consciousness have supported fast adaption of computerized numerical control (CNC) machines. As in human beings' mental ability is becoming more important than physical ability to do the manual work, similarly CNC programming in the same way has more importance along with selection and use of CNC tooling. In this course therefore an attempt has been made to develop skills required for programming, tooling etc for CNC machine. CNC machines normally are not limited to machine tools only but realm of CNC has widened in almost all areas of manufacturing, processes and support activities. It is therefore very important for Diploma mechanical engineers to master CNC technology.

2. Course Outcomes/Skill Sets: At the end of this course, student will be able to:

CO-01	Identify various components of a CNC machine and list the use of those components for any given CNC operation.
CO-02	Study a given production drawing and list the right tools needed to produce a product as per the drawing.
CO-03	Write a CNC turning and milling program for a given production drawing, simulate the program and execute the program in production mode.
CO-04	Develop and/or import a 3-D model of a given component drawing, generate the CNC programming codes using CAM software and execute the program in production mode.

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	CO	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	01	1.Introduction to CNC Machines- Advantages of CNC machines over Conventional machines 2.Explain the Construction features of CNC machine- Machine Structure, bed, spindle motor and drive, axes motor and ball screws using Multimedia 3. Explain Guide ways, LM guides, console, control switches, coolant system, hydraulic system using Multimedia	Ref Table 1	1. Demonstrate Personal, Conduct, Shop etiquettes and general safety practices in CNC machine Comply safe handling of CNC machines, tools and Equipment. 2. Demonstration of CNC machine and its parts - bed, spindle motor and drive, axes motor and ball screws, guide ways, LM

					guides, console, control switches, coolant system, hydraulic system, 3. Identification of safety switches, machine over travel limits and emergency stop. Machine starting & operating in Reference Point, JOG and Incremental Modes
2	01,02	01	1.Explain Axis convention of CNC machine 2. Explain Cutting tool materials, cutting tool geometry – insert types, holder types, insert cutting edge geometry. 3. ISO nomenclature for turning tool holders, boring tool holders, indexable inserts Tool holders and inserts for radial grooving, face grooving, threading, drilling	Ref Table 1	1.Conduct a preliminary check of the readiness of the CNC machine viz., cleanliness of machine, referencing – zero return, 2.Functioning of lubrication, coolant level, correct working of sub-system
3	01,02	01,04	1.Explain Automatic tool exchanger using Multimedia 2. Explain the importance of Tool length compensation, Tool nose Radius compensation and Tool Wear compensation. 3. Explain Machine Zero and Work Zero	Ref Table 1	1.Perform Work and tool setting: - Job zero/work coordinate system and tool setup and live tool setup 2. CNC machining centre operation in various modes: JOG, EDIT, MDI, SINGLE BLOCK, AUTO 3. Setting the tool offsets, entry of tool nose radius and orientation in CNC console
4	03	01,04	1.Explain Programming sequence and format - Absolute and Incremental System 2.Explain G codes and M codes 3. Explain Linear interpolation and Circular Interpolation	Ref Table 1	1. Geometry Wear Correction. Geometry and wear offset correction in CNC Console 2. Program checking in dry run, single block modes
5.	03	01	1.Explain cutting Parameters – Feed, Speed and depth of cut w.r.t CNC machine as per Catalogue 2. Explain Canned Cycle, Mirroring and Subroutines	Ref Table 1	1.Learn various numerical keys, Address Keys, functional Keys of operational console
6.	03	01,04	Write the Part Program for Facing, Turning, Step turning and Taper turning (Write Program for 3 models and execute any one on the machine)	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine

					3.Set the machine with necessary tools and Job 4. Execute the Program in Auto mode to produce the Job.
7.	03	01,04	Write the Part Program for Turning, Profile turning and Thread cutting (Write Program for 3 models and execute any one on the machine)	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine 3.Set the machine with necessary tools and Job 4.Execute the Program in Auto mode to produce the Job
8.	03	01,04	Write a CNC milling program for Pocket machining (Write Program for 3 models and execute any one on the machine)	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine 3.Set the machine with necessary tools and Job 4.Execute the Program in Auto mode to produce the Job
9	03	01,04	Write a part program for drilling 4 holes in a plate Six holes along PCD on a circular plate	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine 3.Set the machine with necessary tools and Job 4.Execute the Program in Auto mode to produce the Job
10.	03	01,04,07	Write a Program using Mirroring Write a Program using Subroutines	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine 3.Set the machine with necessary tools and Job 4.Execute the Program in Auto mode to produce the Job

11	04	01,04,07	Generate the Part Program for Component requiring Turning, Step turning Profile turning and Thread cutting by using CAM software (Program for 3 models and execute any one on the machine)		1.Transfer the simulated Program to machine 2. Set the machine with necessary tools and Job 3. Execute the Program in Auto mode to produce the Job
12	04	01,04,07	Generate a CNC program for component having Pocket machining using CAM software (Program for 3 models and execute any one on the machine)	Study the latest technological changes in this course and present the impact of these changes on industry	1. Transfer the simulated Program to machine 2. Set the machine with necessary tools and Job 3. Execute the Program in Auto mode to produce the Job
13			Demonstrate the manufacturing of following components on CNC machines using YouTube Videos 1. CNC Turning 2. Rollers 3. Spacers 4. Brackets Discuss and Prepare a Report on the videos Presented for each manufactured component		Demonstrate the manufacturing of following components on CNC machines using YouTube Videos 1. Spindles 2. Frames 3. Engine Block 4. Ball Bearings Discuss and Prepare a Report on the videos Presented for each manufactured component
Total i	n hours		39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
01	Discuss the steps for choosing the Right CNC machine tool using various parameters like operator experience, Material to be cut, Part difficulty and complexity, LM guides, Control systems, Cost per part, Availability of space. www.hwaheonasia.com
02	Presentation on Macros and Parametric Programming in CNC by discussing basic macro skill- Macro capability, common features and applications- Macro structure www.thomasnet.com
03	Discuss and present a report on influence of coolant in CNC by explaining Purpose- delivery methods of coolants- Types of coolants- Health and safety issues- Properties- Recycling and disposal of cutting lubricants www. Industr.com
04	Each student has to Present minimum 5 CNC Programming on Machining involving Turning, Milling and Drilling. (Course coordinator has to ensure no repetition of the Programs)

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20l tests 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
		60			
	Semester End Examination	n (Practice)	180	100	40
		Total Marks	100		

5. Format for CIE written Test

Course Name		Operation Management	Test	I/II/III	Sem	IV
Course Code		20ME41P	Duration	80 Min	Marks	30
Note: Answ	ver a	any one full question from each section.	Each full qu	estion carries 10	marks.	
Section	Assessment Questions			Cognitive Levels(R/U/A)	Course Outcome	Marks
T	1					
1	2					
II	3					
II	4					
III	5					
III	6		·			

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) CIE Skill Test -4

SL. No.	СО	Particulars/Dimension	Marks
1	02,04	One Question on Writing CNC program For Turning Model ,Simulation and Preparation of the MODEL on CNC Machine • Writing CNC program—30 Marks • Editing the program—30 Marks • Simulation and Preparation of the MODEL on CNC Machine - 30 Marks	90
2	02,04	Portfolio evaluation based on the average of all Practice Sessions (1-6 Weeks)	10
Total	Marks		100

5. (b) CIE Skill Test-5

SL.	CO	Particulars/Dimension	Marks
No.			

Duration: 240 Min

Duration: 240 Min

Tota	ıl Marks		100
3	02,03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
2	02,04	 One Question on Generating CNC Turning Program/Milling Program, Using CAM Software, Simulation and Preparation of the MODEL on CNC Machine. Preparation of Solid Model for a given Drawing using software - 25 marks Generate Turning Program/Milling Program, Using CAM Software - 05 Marks Interface with the CNC machine and produce the model -10 Marks 	40
1	02,03	One Question on Writing CNC program For Milling Model ,Simulation and Preparation of the MODEL on CNC Machine • Writing CNC program—25 Marks • Editing the Program—15 Marks • Simulation and Preparation of the MODEL on CNC Machine-10 Marks	50

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5					5	

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Automation, Production Systems, and Computer- Aided Manufacturing by Mikell P. Groover Prentice-Hall
1	International publication
2	CAD/CAM Principles and Applications P N Rao McGraw Hill Education
3	CNC Machines. Pabla B.S., Adithan M. New Age International, New Delhi, 2014(reprint)
4	Computer Numerical Control-Turning and Machining centers. Quesada Robert Prentice Hall 2014

8. LIST OF SOFTWARES/ LEARNING WEBSITES:

- 1.http://www.nptel.ac.in
- 2.http://www.youtube.com/watch?v=M3eX2PKM1RI
- 3.http://www.youtube.com/watch?v=EHQ4QIDqENI&list=PLBkqkLQO2nAt5MNLo
- 4.http://www.youtube.com/watch?v=hJFLcvtiNQ I
- 5.http://www.youtube.com/watch?v=BIM1AyxfYkw.
- 6.http://www.mtabindia.com
- 7. http://www.swansoftcncsimulator.com

9. SEE Scheme of Evaluation

SL.	СО	Particulars/Dimension	Marks
No.			

Duration: 180 Min

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	CNC Turning Centre (Tutor or Productive)	Minimum diameter 25 mm, Length 120 mm with ATC. (Approximate)	01
02	CNC Milling Centre (Tutor or Productive) X axis travel - 225 mm, Y axis travel - 150 mm, Z axis travel - 115 mm, With ATC.(Approximate)	X axis travel - 225 mm, Y axis travel - 150 mm, Z axis travel - 115 mm, With ATC.(Approximate)	01
03	Simulation software likes: CNC Simulator Pro, Swansoft CNC, etc.		20 user
04	Latest version of CAD/CAM integration software like MASTER CAM, NX CAM OR EDGE CAM		20 user
05	Desk top computer	Latest configuration	20 no

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering Diploma	Semester	IV
Course Code	20ME43P	Type of Course	Programme Core
Course Name	Product Design and Development	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: Design department of industry is one of the major job areas for Diploma engineers. The fundamental knowledge of Strength of Materials, Engineering Materials, and Computer Aided Design and Drafting is essential to meet job requirement in this sector. To enable a student to work here, they should know how to design a simple machine element, usual procedures in development of product, fundamental knowledge in design of simple machine elements such as shafts, springs, couplings etc, codes, norms, standards and guidelines for selection of appropriate material. In addition to this, Diploma engineers are required to read and interpret the drawings. Therefore, it is essential that they have competency in preparing drawings of machine parts. This course aims at developing analytical abilities in the student to give solutions to simple engineering design problems using standard procedures. Hence this course has been introduced with the expectations that efforts will be made to provide appropriate learning experiences in the use of basic principles to the design solution for applied problems to develop the required skill and competencies.

2. Course Outcomes/Skill Sets: At the end of the Course, the student will be able to:

CO-01	Explain the key principles of product design considering Strength, Aesthetic and Ergonomic
CO-02	Design simple machine elements like shafts, springs, couplings and knuckle joints using standard data.
CO-03	Prepare CAD Part and Assembly drawings for couplings and knuckle joints based on designed parameter.
CO-04	Produce Component based on designed Parameters using 3- D Printing Techniques

Week	со	PO*	Lecture (Knowledge) 3 hours/week	Tutorial (Activity)	Practice (Skill) 4 hours/week (2hours/batch twice
1	01	01	Product Development and Design: 1.Explain Product Development-Stages of Product Development-Need and Feasibility study 2.Explain Development of design-Selection of Materials and Process 3.Explain Protype –launching of product –Product life cycle	hour/week Ref Table 1	in a week) Discuss case studies of Product development by using Video
2	01	01	General consideration in design: Based on Functional requirement Effect on environment Life, Reliability, Safety	Ref Table 1	Case study

	1		ı	1	1
			 Principles of Standardization Assembly Feasibility Maintenance-Cost- 		
			QuantityLegal issues and PatentsAesthetic and Ergonomic		
			factors		
			Manufacturing Processes		
			Aesthetic and Ergonomic consideration in Design:		
3	01	01	 Explain Aesthetic considerations- Basic types of product forms, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic 	Ref Table 1	Case Study on Ergonomics and Aesthetic design principles.
			considerations- Relation between man, machine and environmental factors. Design of displays and controls.		
4	02	03,04	Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength	Ref Table 1	1. Validate the Problems on Shafts for Strength and Rigidity using Ansys (One each on Strength and Rigidity)
5	02	03,04	1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending	Ref Table 1	1. Recap of CAD commands 2. Practice on Section of Solidsa) Prisms b) Pyramid
6	02	03,04	1 Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending	Ref Table 1	1. Practice on Section of Solids- a)Cylinder b) Cone
7	02,03	03,04	Springs: 1. Classification of springs- Application of springs- Leaf springs –Application	Ref Table 1	Sections on Simple Machine Elements (CAD) a) Sectional front view, Front view with

			2.Terminology of Helical spring- Materials and Specification of springs 3. Design of helical spring		Right half in Section, Front view with Left half in Section b) Sectional Top View c) Sectional Side View
8	02,03	03,04	Design of helical spring	Ref Table 1	Sections on Simple Machine Elements (CAD) a) Sectional front view, Front view with Right half in Section, Front view with Left half in Section b) Sectional Top View c) Sectional Side View
9	02,03	03,04	Coupling: Design of Muff coupling	Ref Table 1	Using CAD, prepare Part Models for Muff coupling based on designed parameter and assemble the same. Extract the Sectional views for the above machine element indicating Surface Texture and Bill of Materials
10	02,03	03,04	Design of Protected type Flange Coupling	Ref Table 1	Using CAD, prepare Part Models for Protected type Flange Coupling based on designed parameter and assemble the same. Extract Sectional views for the above machine element indicating Surface Texture and Bill of Materials
11	02,03,	03,04,07	Design of Knuckle Joint		Using CAD, prepare Part Models for Knuckle Joint based on designed parameter and assemble the same. Extract Sectional views for the above machine element indicating Surface Texture and Bill of Materials
12	04	03,04,07	3D Printing 1. Introduction, Process, Classifications, Advantages of		

Total ir	n hours		39	13	52
13	04	03,04,07	1. Working of Fused Deposition Modelling (FDM) Machine- Single and Multi Nozzle printers, Machine Configuration- Cartesian, Delta, Polar and robotic arm configuration 3D printers 2. Common FDM materials- PLA, ABS, PA, TPU,PETG, PEEK and PEI, Printer Parameters - Temperature of the nozzle and the platform, the build speed, the layer height, Warping, Layer Adhesion, Support Structure, In-fill & Shell Thickness 3. Benefits & Limitations of FDM, Software Tools- 3D modelling, Slicers & 3D Printer Hosts		Printing of Designed and Modelled component (flange coupling and knuckle joint) on any available 3D printing machine and carryout post processing of additively manufactured product (Inspection and defect analysis).
			additive over conventional Manufacturing, Applications, Modelling for Additive Manufacturing 2. Additive Manufacturing Techniques, 3D Printing Materials and its forms, Post Processing Requirement and Techniques. 3. Product Quality, Inspection and Testing, Defects and their causes, Additive Manufacturing Application Domains	Study the latest technological changes in this course and present the impact of these changes on industry	Preparation of 3D Printer for printing – Modelling, Saving CAD file into STL file, Slicing, Material loading and printing parameter selection

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
01	Presentation on design of Bicycles for Indian children focusing on Aesthetic and Ergonomics by Explaining market analysis- user study – Problem identification – Product design and specification- Concept generation- Material and Manufacturing Processes- Final concept selection www.sastechjournal.com
02	Presentation on types of suspension springs used in Automobile vehicles by explaining leaf- spring, Coil spring, Torsion Spring, Air bags, Rubber Springs www.theengineerspost.com
03	Presentation on different types of Keys used in Transmission system and importance such as parallel key, Saddle key, Sunk Key, Gib headed key, Feather Key, Woorruff Key with Advantages and applications
04	Presentation on Antifriction Bearing by explaining rolling contact- journal ball bearing construction- Cylindrical bearing – Needle bearing – Foot step Bearing – Plumber Bearing

05	Presentation on Friction Clutches used in Automobiles by explaining parts- Single plate- Multi plate- Purpose – Application
06	The Role of Additive Manufacturing in the Era of Industry 4.0
07	Application of Additive Manufacturing in health care industry

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion				
1.	CIE-1 Written Test	5	80	30	A				
2.	CIE-2 Written Test	9	80	30	Average of three tests				
3	CIE-3 Written Test	13	80	30	30				
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill test				
5	CIE-5 Skill Test-Practice	12	180	100	reduced to 20				
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10				
		60							
	Semester End Examination	100	40						
	Semester End Examination (Practice) 180 100 40 Total Marks 100								

5. Format for CIE written Test

Course Name		Production Development	Design	and	Test	I/II/III	Sem	IV
Course Coo	de	20ME43P			Duration	80 Min	Marks	30
Note: Ansv	<i>w</i> er a	ny one full question	from each sec	tion. Ea	ach full ques	tion carries 10 m	arks.	
Section		Assessr	nent Question	S		Cognitive Levels(R/U/A)	Course Outcome	Marks
T	1							
1	2							
11	3							
II	4							
III	5							
	6							

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL.	СО	Particulars/Dimension	Marks
No.			
		One Question on Design of Shaft Subjected to Strength and Rigidity	60
1	02	Fixing the Diameter of Shaft after design 30 Marks	
		Validate the Designed parameters of Shaft for Strength and	
		Twisting using Ansys- 30 Marks	
2	03	One question on Section of Solids (Prism/Pyramid/Cone/Cylinder)	30
		 Placing the Section plane and drawing the section – 20 Marks 	
		 Extracting the True shape of the Section – 10 Marks 	
3	01,02,03	Portfolio evaluation based on the average of all Practice Sessions (1-6	10
		Weeks)	
Tota	l Marks		100

Duration: 240 Min

5. (b)For CIE Skill Test-5

SL. No.	CO	Particulars/Dimension	Marks
1	03,04	One Question on Design and Assembly drawing of Simple Machine parts like Muff Coupling/Flange Coupling/ Knuckle Joint • Design of Simple Machine part by using Data Hand Book35 Marks • Preparation of Part Models for the Designed values by using CAD Software 35 Marks • Assembly of Part Models using CAD software With Bill of Materials20 Marks	90
2	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
Tota	l Marks		100

Duration: 240 Min

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students		
No.							Score		
		2	4	6	8	10			
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8		
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6		
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2		
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2		
	Average Marks= (8+6+2+2)/4=4.5								

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description					
1	A Text book of Machine Design R.S. Khurmi & J.K.Gupta S. Chand publication					
2	Machine design S G Kulkarni McGraw Hill Education Publications					
3	Introduction to Machine design V B Bhandari McGraw Hill Education Publications					
4	Design Of Machine Elements Vol I, Vol II J.B.K. Das , P.L.Srinivas Murthy Sapna Publication					
5	Machine Component Design William Orthwein Jaico publication					
6	Design Data Hand Book for Mechanical Engineers K Mahadevan & K Balaveera Reddy CBS publications					
7	Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.					
8	J.D. Majumdar and I. Manna, "Laser-Assisted Fabrication of Materials", Springer Series in Material Science, 2013					
9	D.T. Pham and S.S. Dimov, "Rapid manufacturing: The technologies and applications of rapid prototyping and rapid tooling", London-New York, Springer, 2001					
10	Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010					
11	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011.					
12	CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017					

13	L. Lu, J. Fuh and Y.S. Wong, "Laser-Induced Materials and Processes for Rapid					
13	Prototyping", Kulwer Academic Press, 2001					
14	Zhiqiang Fan And Frank Liou, "Numerical Modelling of the Additive					
14	Manufacturing (AM) Processes of Titanium Alloy", InTech, 2012					

8. LIST SOFTWARES/WEBSITES

1. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left home.html

2 http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left mod4. html

9. SEE Scheme of Evaluation

SL.	CO	Particulars/Dimension				
No.						
1	02,03	One Question on Design and Assembly of Simple Machine parts like Muff coupling/Flange Coupling/ Knuckle Joint • Design of Simple Machine part by using Data Hand Book35 Marks • Preparation of Part Models for the Designed valves By using CAD Software —25 Marks • Assembly of Part Models By using CAD Software With Bill of Materials20 Marks	80			
2	01,02,0 3,04	Viva voce	20			
	Total Ma	arks	100			

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Latest version of CAD software		20 user
02	Desk top computer	Latest configuration	20 no's
03	Laser printer		02 no's
04	3-D Printing Machine		01 no

Duration: 180 Min

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	IV
Course Code	20ME44P	Type of Course	Programme Core
Course Name	Elements of Industrial Automation	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: In present scenario, Manufacturing industries are moving towards complete automation. Small and medium industries are in a phase of switching to PLC and SCADA technology for data acquisition and control. Industrial automation systems are used to control and monitor a process, machine or device in a computerized manner that usually fulfils repetitive functions or tasks. They are intended to operate automatically in order to reduce and improve human work in the industry. Advantages of this technology is commonly attributed to higher production rates and increased productivity, more efficient use of materials, better product quality, improved safety, shorter workweeks for labour, and reduced factory lead times. The Automation Engineer will design, program, simulate and commission automated machines and plantwide processes to perform many job functions. Depending on the size of the organization, the engineer will perform some or all of these responsibilities. Therefore, it is necessary for diploma engineers to have knowledge of both PLC and SCADA technology. This course attempts to provide basic theoretical and practical aspects of automation technologies to develop operational competency. Hence this course is the foundation for diploma engineers who want to further specialise in the field of industrial automation

2. Course Outcomes: At the end of this course, student will be able to

CO-01	Select the right sensor and/or actuator for automating a given application and demonstrate process variables using sensors and/or transducers.
CO-02	Perform specified control functions using a Programmable Logic Controller (PLC) and list various applications of embedded systems.
CO-03	Design and test an automation system for a required operational specification and troubleshoot to resolve any given issue(s).
CO-04	Explain the concepts of SCADA, HMI and DCS and list their various applications

			Lecture	Tutorial	Practice
Week	СО	PO*	(Knowledge)	(Activity)	(Skill)
week	CO		3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	01	Introduction:	Ref Table 1	Study the following appliances/ automation

			1. Need and benefits of Industrial Automation, Automation Hierarchy, Basic components of automation system, description of each component 2. Automation technology as a part of engineering sciences, Key development milestones in the history of automation technology, Effects of automation on people. 3. Types of automation system:-Relay logic and PLC		systems and identify various elements used and their function 1. Air conditioning System 2. Automatic water level control 3. Elevator(for Three Floor) 4. Washing Machine Write the Block Diagram For each and explain with a Multimedia Presentation
2	01	01	Programmable logic controller: 1. Introduction, Compare Relay Logic Control and PLC Logic Control, Internal Architecture of PLC 2. I/O Modules (Interfaces), Memory organization. Input devices: • Mechanical Switches • Proximity Switches 3. Input devices: • Photo electric Sensors and Switches • Encoders • Temperature Sensors • Position/Displacement Sensors	Ref Table 1	Demonstrate the working of below shown Switches/Sensor. a. Various industrial Switches (Push Button, ON/OFF, Toggle, Emergency, Rotary Switches etc.) b. Proximity- Inductive, Capacitive and Optical Sensor c. Temperature Sensor d Float Sensors Note: Connect each sensor directly to the LED/Lamp with appropriate power supply
3	01	01	 1. Input devices: Strain Gauges Pressure Sensors Liquid level detectors 2. Input devices: Fluid flow measurement Smart Sensors 3. Output Devices: Relay Directional control Valve 	Ref Table 1	You tube presentation on Input and Output devices

4	01	01	ADC and DAC ADC and DAC Motors- DC motor, Synchronous motor, Servo motor, ADC and DAC ADC and DAC	Ref Table1	Demonstrate the Forward and Reversal of Stepper, Servo and DC Motors with the help of Drivers. Note: Demonstrate the above without using any controllers
5	02	02	 PLC Programming: Programming standards, List Different PLC Programming, Ladder diagram, Standard IEC 1131-3 Symbols used for I/O Devices Ladder diagram for logic gates. AND,OR,NOT,NAND,NOR,XOR, XNOR 	Ref Table1	 Execute energized motor or bulb using Switches in series or Parallel Write ladder diagram to test digital logic gates and Execute/Simulate the same.
6	02	01	1. Writing Equivalent ladder diagram for Electric Switch, Belt drive, motor circuit Latching, Sequential O/P 2. Introduction to Timer functions. Applications of timing functions in process control On Delay Timer Function, Off-delay Timer Function	Ref Table 1	 There are 3 mixing devices on a processing line A,B ,C. After the process begin mixer-A is to start after 7 seconds elapse, next mixer-B is to start 3.6 second after A. Mixer-C is to start 5 seconds after B. All of then remain ON until a master enable switch is turned off. Develop PLC ladder diagram, timing diagram and simulate the same Write a Ladder Program to count the number of Items moving

			3. PLC counter functions, Applications of PLC counter function in process control		on a conveyor Belt and Execute/Simulate the same
7	03	02	1) Relay, Jumps and Subroutines 2) Develop Ladder Program for relay based motor control automation such that the motor reverses its direction when the limit switches are activated 3) Develop a PLC ladder diagram to construct an alarm system which operates as follows. - If one input is ON nothing happens If any two inputs are ON, a red light goes ON If any three inputs are ON, an alarm sirens sound If all are ON, the fire department is notified.	Ref Table 1	Execute the Ladder Program for relay based motor control automation such that the motor reverses its direction when the limit switches are activated and also Demonstrate by interfacing with PLC Simulate the PLC ladder diagram developed for an alarm system and also Demonstrate by interfacing with PLC
8	03	02	 2) Develop PLC program for the following application a) Traffic Light 3)Develop PLC program for the following application b) Water Level Indicator 	Ref Table 1	Execute a PLC program for the following applications i) Traffic light controlling ii) Water level controlling
9	03	02	 & 2) Develop automatic door system using optical sensor and linear actuator Develop Automatic Elevator control 	Ref Table 1	 Execute automatic door system using optical sensor and linear actuator Design ladder diagram for an Automatic Elevator control Also, Test and simulate the ladder diagram designed to operate and control the

					Automatic Elevator control
10	03	02	1 & 2) Design ladder diagram for car parking. (Hint: car is to be detected and enter the parking space to a particular location if space is available. If there is no space, a lamp should indicate that parking is full) 3) Design ladder diagram for operating and controlling the Lift.	Ref Table 1	 Simulate a ladder diagram for car parking. Test and simulate a ladder diagram designed to operate and control the Lift
11	02	02,07	1) Embedded System- Block Diagram of Embedded System 2) Applications of Embedded System • Robotics Drones • Braking System • Air conditioning, Refrigerator • Engine control System, 3) Applications of Embedded System • Automatic Washing machine • Microwave Oven • Keyless entry in Automobiles.		You tube Presentation on Applications of Embedded System
12	04	01,07	1)Concepts on Distributed control System, 2) Concepts on HMI 3)Introductions to SCADA	Study the latest technologica l changes in this course and present	 Multi media Exposure to DCS system Demonstrate the HMI interface to control Light in AND/OR Logic
13	04	01,07	1)Typical SCADA block diagram, 2)Benefits of SCADA, 3) Applications of SCADA	and present the impact of these changes on industry	 Multi media Exposure to SCADA system OR Make case study visiting any nearby industry (Packaging/Milk Dairy/Processing) using HMI, SCADA/DCS systems.

Total in hours	39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
01	Write a PLC Ladder Program to Switching on/off the Lamp whether they are at the bottom or the top of the staircase.
02	The production line may be powered off accidentally or turned off for noon break. The program is to control the counter to retain the counted number and resume counting after the power is turned ON again. When the daily production reaches 500, the target completed indicator will be ON to remind the operator for keeping a record. Press the Clear button to clear the history records. The counter will start counting from 0 again. Write a PLC Ladder Program to perform this operation.
03	Write a PLC Ladder Program Providing lubricant for the gear box before the lathe spindle starts to run which aims to ensure that the oil pump motor starts first and the main motor starts subsequently.
04	Write a PLC Ladder Program such that Once the photoelectric sensor detects 10 products, the robotic arm will begin to pack up. When the action is completed, the robotic arm and the counter will be reset.
05	 Develop PLC Programming Examples on Industrial Automation according to the logic given below, A Saw, Fan and oil pump all go ON when a start button is pressed. If the saw has operated less than 20s, the oil pump should go off when the saw is turned off and the fan is to run for an additional 5s after the shutdown of the saw. If the saw has operated for more than 20s, the fan should remain on until reset by a separate fan reset button and the oil pump should remain on for an additional 10 s after the saw is turned off.
06	Develop and Simulate a PLC Ladder Diagram for Bottle Filling Plant
07	Study and present a Report on home Automation
08	Study and present a Report on Embedded systems in Automation
09	Study and present a Report on Automation in Processing Industries

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20

6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
			Tot	al CIE Marks	60
	Semester End Examination	(Practice)	180	100	40
			,	Total Marks	100

5. Format for CIE written Test

Course Name		Elements of Automation	Test	I/II/III	Sem	IV
Course Coo	le	20ME44P	Duration	80 Min	Marks	30
Note: Ansv	ver a	any one full question from each section. Ea	ich full ques	tion carries 10 m	arks.	
Section	Assessment Questions			Cognitive Levels(R/U/A)	Course Outcome	Marks
T	1					
1	2					
11	3					
II	4					
III	5		·			
	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

Duration: 240 Min

Duration: 240 Min

5.(a)For CIE Skill Test -4

SL. No.	СО	Particulars/Dimension	Marks
1	02	Select a suitable Sensor / Switch for a given Process Variable and activate • Selection of Sensor/Transducer – 05Marks • Activation and Result – 15 Marks	20
2	02	Select a suitable motor for the given case and energize • Selection of the Motor – 10 Marks • Energize and Result – 20 Marks	30
3	03	Develop and Simulate a simple ladder diagram for a given Case • Writing Ladder Program – 20 Marks • Simulate and Troubleshoot - 20 Marks	40
4	01,02,03	Portfolio evaluation based on the average of all Practice Sessions (1 -6 Weeks)	10
Tota	l Marks		100

5. (b) For CIE Skill Test -5

SL.	СО	Particulars/Dimension	Marks
No.			
1	03	Device and Simulate a ladder diagram for the given Case Study (PLC Based)	60
		Writing Ladder Program – 40 Marks On the Ladder Program – 40 Marks On the Ladder Program – 40 Marks	
		 Simulate and Troubleshoot - 20 Marks 	
2	04	Prepare a SCADA Block Diagram for the given Case	30
3	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
Tota	l Marks		100

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5					5	

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Programmable logic Controllers By W. BOLTON
2	Digital electronics By FLYOD
3	Exploring PLC with applications By PRADEEP KUMAR SRIVATSAVA
4	Automation , Production systems and Computer integrated Manufacturing By MIKELL GROOVER
5	Sensors Hand book-SABRIE SOLOMAN-MC-GRAW HILL publications
6	Hand book of Modern Sensors" Physics ,Designs and Applications- JACOB FRADEN-Springer Publications
7	Electric Motors and Drives BY AUSTIN HUGHES and BILL DRURY

8. LIST OF SOFTWARE/LEARNING WEBSITES

1.http://www.vlab.com

2. http://www.mtabindia.com

3. http://www.nptel.ac.in

9. SEE Scheme of Evaluation

SL.		Particulars/Dimension	Marks
No.	CO	·	
1	02	Select a suitable Sensor / Switch for a given Process Variable and activate • Selection of Sensor/Transducer – 10 Marks • Activation and Result –20Marks OR Select a suitable motor for the given case and energize • Selection of the Motor – 10 Marks • Energize and Result – 20 Marks	30
3	03	Device and Simulate a ladder diagram for the given Case Study • Writing Ladder Program –30 Marks • Simulate and Troubleshoot –20 Marks	50
4	01,02, 03,04	Viva voce	20
	Total N	Marks	100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	PLC Trainer Kit with the following Modules		05 No

Duration: 180 Min

	Door Controller		
	Car Parking Application		
	Water Level Controller		
	Conveyor Controller Application		
	Lift control Application		
	With different Length Patch Cords		
	Switches		
	 Mechanical Switches 		
02	 Proximity Switches 		05 No each
	 Photo electric Sensors and Switches 		
	Sensors		
	 Temperature Sensors 		
	 Position/Displacement Sensors 		
	Strain Gauges		
03	 Pressure Sensors 		05 No each
	 Liquid level detectors 		
	 Fluid flow measurement 		
	 Smart Sensors 		
	 Proximity Sensors 		
04	Induction Motor with DOL Starter	3 Phase Ac 50 Hz	01
05	Synchronise Motor with DOL Starter	3 Phase Ac 50 Hz	01
06	Stepper Motor	Standard size	01
07	Relays	Standard size	10
08	Counter and Timers	Standard size	10

Government of Karnataka Department of Collegiate and Technical Education

Programme	Audit Course	Semester	IV
Course Code	20ME45T	Type of Course	Audit
Course Name	Indian Constitution	Contact Hours	2 hours/week 26 hours/semester
Teaching Scheme	L:T:P :: 2:0:0	Credits	2
CIE Marks	50	SEE Marks	Nil

1. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	CO1	Understand Preamble, salient features and importance of Indian Constitution.			
CO-02	CO2	Understand Fundamental rights, duties and Directive principles of state policy.			
CO-03		Understand Parliamentary system of governance, Structure, Functions, Power of			
	CO3	Central, state governments (Legislative, Executive) and Judiciary.			
CO-04	CO4	Understand Panchayat Raj Institutions and Local self-governments, UPSC, KPSC,			
		NHRC, Status of women, RTE etc.			

Week	СО	Detailed Course Content			
1	1	Introduction to constitution of India-Formation and Composition of the Constituent Assembly-Salient features of the Constitution-Preamble to the Indian Constitution			
2	1,2	Fundamental Rights- Definition, The right to equality, The right to freedom, The right against exploitation, The right to freedom of religion.			
3	1,2	Cultural and educational rights and The right to constitutional remedies. Fundamental Duties, Directive principles of state policy.			
4	1,3	Parliamentary system of governance- Structure of Parliament- Lok Sabha and Rajya Sabha. Functions of parliament- Legislative, Executive, Financial Function Powers of Lok Sabha and Rajya Sabha.	2		
5	1,3	Procedure followed in parliament in making law, Annual financial statement (Budget) – procedure in parliament with respect to estimates, Appropriation bill, Supplementary, additional grants, Vote on account, votes on credit and exception grant, special provisions, rules of procedure.			
6	1,3	Structure of union executive, Power and position of President. Vice President, Prime minister and council of ministers.			
7	1,3	Structure of the judiciary: Jurisdiction and functions of Supreme Court, high court, and subordinate courts.			
8	1,3	Federalism in the Indian constitution- Division of Powers: Union list, State list and concurrent list. Structure of state legislation, Legislative assembly and Legislative council.			
9	1,3	Functions of state legislature, Structure of state executive-Powers and positions of Governor, Speaker, Deputy Speaker, Chief Minister and council of minister.			
10	4	Local self-government- meaning-Three tier system, Village Panchayat-Taluk panchayat Zilla panchayat, Local bodies-Municipalities and Corporations, Bruhath Mahanagara Palike, Functions of Election commission, UPSC, KPSC.	2		

Total in Hours				
13	1,4	National Human Rights Commission Constitution- Powers and function of the Commission-Employee rights- Provisions made, Contractual-Non contractual employee rights-Whistle blowing-definition-Aspects-Intellectual Property Rights (IPR)–Meaning-Need for protection- Briefly description of concept of patents, Copy right, Trademark	2	
12	4	Status of Women in India - Women in rural areas, Constitutional Safeguards - Dowry Prohibition act 1961- Domestic violence act 2005- Sexual harassment at work place bill 2006. Human Rights of Children- Who is a child- list the Rights of the Child- Right to education, Protection of Children from Sexual Offences Act (POCSO)-2012-	2	
11	4	Amendment of the constitution, Human Rights-Definition-constitutional provisions-right to life and liberty-Human Rights of Women-Discrimination against women steps that are to be taken to eliminate discrimination against women in Education, employment, health care, Economic and social life,	2	

REFERENCES

- Introduction to the Constitution of India- Dr. Durga Das Basu
 Empowerment of rural women in India-Hemalatha H.M and Rameshwari Varma, Hema Prakashana.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion	
1.	CIE-1 Written Test	5	80	30	Average of three	
2.	CIE-2 Written Test	9	80	30	tests	
3	CIE-3 Written Test	13	80	30	30	
4.	CIE-4 MCQ	6	60	20	Average of two	
5	CIE-5 Open Book Test	12	60	20	CIE = 20	
Tota	l CIE Marks	50				
Seme	ester End Examination (Pract	-				
Tota	l Marks	50				